Adsorption is a widely used method for the treatment of dissolved contaminants. Various agro-industrial wastes have been explored as potential adsorbents, showing high efficiency in dye removal. Each adsorbate-adsorbent pair needs kinetic, and equilibrium models to scale up this process. In this work, the equilibrium, kinetics and thermodynamics of the corn Tuza-Red 40 system were evaluated under batch system at ph = 2.0 at temperatures of 25, 40, and 55 °C. The Langmuir, Freundlich and Temkin models were selected for the isotherm representation, while the Lagergren, Ho, and Elovich equations for the kinetics of the process. The Freundlich model presented the best fit to the isotherms, the adsorption kinetics was best described by the Ho equation, and the values for Gibbs free energy and entropy indicated the spontaneity and feasibility of the process.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
The wide distribution of the common beech (Fagus sylvatica) in Europe reveals its great adaptation to diverse conditions of temperature and humidity. This interesting aspect explains the context of the main objective of this work: to carry out a dendroclimatic analysis of the species Fagus sylvatica in the Polaciones valley (Cantabria), an area of transition with environmental conditions from a characteristic Atlantic type to more Mediterranean, at the southern limit of its growth. The methodology developed is based on the analysis of 25 local chronologies of growth rings sampled at different altitudes along the valley, generating a reference chronology for the study area. Subsequently, the patterns of growth and response to climatic variations are estimated through the response and correlation function, and the most significant monthly variables in the annual growth of the species are obtained. Finally, these are introduced into a Geographic Information System (GIS) where they are cartographically modeled in the altitudinal gradient through multivariate analysis, taking into account the different geographic and topographic variables that influence the zonal variability of the species response. The results of the analyses and cartographic models show which variables are most determinant in the annual growth of the species and the distribution of its climatic response according to the variables considered.
This paper highlights the opportunities as well as challenges posed for Bangladesh by the Belt and Road Initiative (BRI) of China. BRI is being considered as the most expensive project ever initiated connecting more than half of the world population from Asia, Europe and Africa. For writing this paper, the authors utilized published sources such as journal articles, newspaper articles and web-based information published from 2013 to 2024. The article proposes that although the involvement of Bangladesh in the BRI is not absolutely free of challenges, it can serve the ultimate national interest through greater connectivity with other countries, increased volume of trade and economic activities and socio-cultural exchange. Although, as the originator and major contributor of the BRI, China will be the principal benefiter, other partner countries can also attain considerable benefits out of this historical mega scheme through the application of appropriate vision and strategic implementation. This paper has highlighted those benefits/opportunities and challenges for Bangladesh that can be beneficial for upcoming research projects particularity aimed at development studies, political economy and international relations. On the other hand, based on the arguments made on this paper, policymakers and businessmen can formulate their best policies as well as trading strategies with mutual benefits for all the stakeholders involved.
Google Earth images in the Marche Region of Central Italy revealed a circular structure consisting of a ring system made up of concentric hills and valleys. Cartography, DEM, geological, and available geophysical data were used to constrain the possible origin of the structure. Located in the Messinian foredeep deposits of the Central Apennines, it has a rim diameter of 3.75 km and a central uplift connected to its southernmost part. As it was formed in the clays of the Lower Pliocene, and clays are believed to have emerged definitively after the Upper Pliocene, its age might be constrained to the Lower Pleistocene. Similar concentric structures are usually found in impact craters, sedimentary domes, and volcanic landforms. As salt domes and magmatic activity are not found in this region, this study seeks to validate the results of previous work that it was the result of an ancient impact crater of hydrological, brachyanticline, or clayey diapiric origins. Specifically, an observed second ring portion with a curvature radius about double the first in size will be investigated in this work. This second ring portion appears to be concentric to the first one and is visible along its northern and western parts. Although double concentric rings are usually due to impact craters, the absence of the ring portion in the other two directions and the probable deviation of a river, deduced by studying hydrography, support the hypothesis that it might be of clay diapir origin.
In order to replace conventional materials in the existing composite world, there has been a focus on adopting coir fibres, which are lightweight, adaptable, efficient, and have great mechanical qualities. This study describes the creation of environmentally responsible bio-composites with good mechanical characteristics that employ coir powder as a reinforcement, which has good interfacial integrity with an epoxy matrix. And these epoxy-coir composites supplemented with coir particles are predicted to function as a reliable substitute for traditional materials used in industrial applications. Here, untreated and alkali-treated coir fibres powder were employed as reinforcement, with epoxy resin serving as a matrix. An experimental investigation has been carried out to study the effect of coir powder reinforcement at different weight percentages (5 wt%, 10 wt%, 15 wt%, 20 wt%, 25 wt%, and 30 wt%). The morphological study, followed by a scanning electron microscope (SEM) and an optical microscope (OM), demonstrated that the powder and matrix had the strongest adhesion at 20 wt% coir powder-reinforced composite, with no voids, bubbles, or cracks. Based on the entire investigation, the polymer composite with 20 wt% reinforcement exhibited better mechanical qualities than the other combinations.
Copyright © by EnPress Publisher. All rights reserved.