In this study, the effect of roasting and boiling on the yield and oxidative stability of soya bean oil was investigated. The oil was soxhlet extracted and the oxidative stability was determined by the free fatty acid value, acid value and peroxide value. The results showed that the oil yield, free fatty acid value, acid value and peroxide value were significantly affected by roasting, boiling, and the thermal treatment time. The percentage oil yield in the control oil sample was 18.51%, which increased to 20.24% and 20.73% after boiling and roasting respectively, at 40mins. The corresponding free fatty acid and the peroxide value of the control oil sample were 0.14% and 2.04 meqO2/kg, which increased to 0.82% and 6.60 meqO2/kg by roasting, and 0.47% and 5.62 meqO2/kg by boiling respectively. Thus the oil yield, free fatty acid value, peroxide value, and acid value increased with increasing roasting and boiling time.
The results indicate that roasting provides a higher oil yield than boiling, but boiled oil has higher oxidative stability than roasted oil.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
The selection of a suitable place for an activity is an important decision made for a project, which requires assessing it from different points of view. Educational use is one of the most complicated and substantial uses in urban space that requires precise and logical attention to its location and neighborhood with similar and consistent uses. Faculties of universities are educational spaces that should be protected against physical and moral damage to create a healthy educational environment. To do this, it is necessary to find and assess the factors affecting the location of educational spaces. The extant study aimed at finding and assessing the factors affecting the location of educational spaces to locate art and architecture schools or faculties in 4 important universities. The present study is applied developmental research in terms of nature and descriptive-analytical in terms of method. This study used the AHP (Analytical Hierarchy Process) weighing and controlled the prioritization through the TOPSIS (Technique for Order Preference by Similarity) technique in the methodology phase. Since there was no criterion and metric for these centers, six were chosen as the primary metrics after reviewing the relevant theoretical foundations, early investigations, and collecting effective data. Finally, the results indicated the most important factors of vehicular or roadway access, pedestrian access, slope, parking, adjacency, neighborhood, and area. Among the mentioned factors, pedestrian access (w: 0.4231) had the highest weight and was the priority in the location of architecture faculty in studied campuses and areas inside the universities.
Industrial heritage is a legacy from the past that we live with today and pass on to future generations. The economic value of this heritage can be defined as the amount of welfare that it generates for society, and this value should not be ignored. However, current research based on economic analysis has mostly focused on qualitative statements instead of quantitative assessment. This study proposes an innovative methodology combining qualitative (field research) and quantitative (willingness to pay and contingent valuation) methods to assess the economic value of industrial heritage. The industrial heritage of Tangshan, China, was chosen as a case study, and the research found that museums and cultural creative parks are effective ways to conserve industrial heritage. The entrance fee can be used to represent the economic value of the heritage site. There was a positive correlation between the influence of economic value and the entrance fees residents would prefer to pay. The results indicate the locals would prefer lower entrance fees for the transformed heritage museums (The average current cost: $2.23). Locals were most concerned about the entrance fees for the Kailuan Coal Mine and Qixin Cement Plant Museums, which have both been renewed as urban landmarks for city tourism. Renewal methods have been applied to six industrial heritage sites in Tangshan; these sites have their own conservation and renewal practices based on city-level development or industrial attributes. Thus, when residents recognize the economic value of a heritage site, they are willing to pay a higher entrance fee. This research demonstrates the economic value of industrial heritage using a mixed methods approach and provides a basis for assessing the value of cultural heritage for urban tourism analysis.
Copyright © by EnPress Publisher. All rights reserved.