Objective: To study the changes of growth, physiological and absorption characteristics of Pinus bungeana under ozone (O3) stress, to elucidate the correlations among the indicators, and to determine its degree of response to O3. Methods: The growth, physiological characteristics and O3 uptake capacity of Pinus bungeana seedlings were measured in an open-top O3 fumigation manual control experiment with three concentration gradients (NF: normal atmospheric O3 concentration, NF40: normal atmospheric O3 concentration plus 40 nmlol/mol; NF80: normal atmospheric O3 concentration plus 80 nmol/mol), and the relationships between the characteristics of Pinus bungeana under different O3 concentrations were investigated with correlation analysis, redundancy analysis and analysis of variance. Results: (1) Plant height growth (ΔH), diameter growth at 50 cm (ΔDBH), stomatal size (S), stomatal density (M), stomatal opening (K), stomatal conductance (Gs), net photosynthetic rate (Pn), transpiration rate (Et), water use efficiency (WUE), maximum photochemical efficiency (Fv/Fm), chlorophyll content (CHL), whole tree water consumption (W), and O3 uptake rate () all decreased with the increase of O3 concentration; while intercellular CO2 concentration () and relative conductivity (L) increased with the increase of O3 concentration; (2) growth indicators of Pinus bungeana under O3 stress (ΔH, ΔDBH) were the most correlated with O3 uptake status (, W), followed by photosynthetic indicators (, WUE, ,, ) and growth indicators (ΔH, ΔDBH) and stomatal characteristics (K, M, S) under O3 stress, some physiological indicators (L, ) were relatively weakly correlated with photosynthesis (, WUE,,, ) and stomatal (K, M, S); (3) all the indicators of Pinus bungeana were significantly different under O3 treatments of NF and NF80 (P < 0.05), ΔH, ΔDBH, M, CHL, , , W and were most significantly different under NF and NF40 treatments, and K, S, WUE, , , , L were more significantly different under NF40 and NF80 treatments. Conclusion: The experiment proved that the growth of Pinus bungeana was slowed, photosynthetic capacity was reduced, and the absorption capacity of O3 was further reduced by long-term exposure to high concentration of O3. The growth of Pinus bungeana was most correlated with the changes of O3 absorption characteristics, and the stomatal characteristics were most correlated with photosynthetic physiological characteristics, and the reduction of photosynthetic capacity etc. further led to the curtailment of its growth.
Forest is the main carbon sink of terrestrial ecosystem. Due to the unique growth characteristics of plants, the response of their growth status and physiological activities to climate change will affect the carbon cycle process of forest ecosystem. Based on the local scale CO2 flux and temperature observation data recorded by the FLUXNET registration site and Harvard Forest FLUX observation tower from 2000 to 2012, combined with the phenological model, this paper analyzes the impact of temperature changes on CO2 flux in temperate forest ecosystems. The results show that: (1) the maximum NEE in 2000–2012 was 298.13 g·m-2·a-1, which occurred in 2010. Except in the 2010 and 2011, the annual NEE in other years was negative. (2) NEE, GPP, temperature and phenology models have good fitting effects (R2 > 0.8), which shows that the stable period of photosynthesis in temperate mixed forest ecosystem is mainly concentrated in summer, and vegetation growth is the dominant factor of carbon cycle in temperate mixed forest ecosystem. (3) The linear fitting results of the change time points of air temperature (maximum point, minimum point and 0 point date) and the change time points of NEE and GPP (maximum point, minimum point and 0 point date) show that there is a significant positive correlation between air temperature and CO2 flux (P < 0.01), and the change of air temperature affects the carbon cycle process of temperate mixed forest ecosystem.
In addition to create a beautiful and comfortable environment for human beings, it is more important to create an ecological environment suitable for human beings. Plant landscaping is no longer just the use of plants to create visual effects of the landscape, it also contains the ecological landscape, cultural landscape and even deeper meaning. In this article, the concept of ecological garden the benefits produced and the related content of plant landscaping are analyzed, and the situation of plant disposition and existing problems in Shenyang area are analyzed concretely.
The article discusses the essence of integrative geography and its importance for the theory and practice of geographical science. Such areas of integrative geography are characterized, the development of which will further increase the importance of applied geographical science. They include teaching about cultural landscape and historical landscape (part of landscape studies), geoecological expertise and environmental impact assessment (part of geographic ecology), geographic archeology and ecological culture (part of historical geography), landscape management and landscape services (part of landscape planning), and tourism—Assessment and planning of recreational resources (part of recreational geography).
This study delves into the evolving landscape of smart city development in Kazakhstan, a domain gaining increasing relevance in the context of urban modernization and digital transformation. The research is anchored in the quest to understand how specific technological factors influence the formation of smart cities within the region. To this end, the study adopts a Spatial Autoregressive Model (SAR) as its core analytical tool, leveraging data on server density, cloud service usage, and electronic invoicing practices across various Kazakhstani cities. The crux of the research revolves around assessing the impact of these selected technological variables on the smart city development process. The SAR model’s application facilitates a nuanced understanding of the spatial dynamics at play, offering insights into how these factors vary in influence across different urban areas. A key finding of this investigation is the significant positive correlation between the adoption of electronic invoicing and smart city development, a result that stands in contrast to the relatively insignificant impact of server density and cloud service usage. The conclusion drawn from these findings underscores the pivotal role of digital administrative processes, particularly electronic invoicing, in driving the smart city agenda in Kazakhstan. This insight not only contributes to the academic discourse on smart cities but also holds practical implications for policymakers and urban planners. It suggests a strategic shift towards prioritizing digital administrative innovations over mere infrastructural or technological upgrades. The study’s outcomes are poised to guide future smart city initiatives in Kazakhstan and offer a reference point for similar emerging economies embarking on their smart city journeys.
Species of the Moraceae family are of great economic, medicinal and ecological importance in Amazonia. However, there are few studies on their diversity and population dynamics in residual forests. The objective was to determine the composition, structure and ecological importance of Moraceae in a residual forest. The applied method was descriptive and consisted of establishing 16 plots of 20 m × 50 m (0.10 ha), in a residual forest of the Alexánder von Humboldt substation of the National Institute of Agrarian Innovation-INIA, Pucallpa, department of Ucayali, where individuals of arboreal or hemi-epiphytic habit, with DBH ≥ 2.50 cm, were evaluated. The floristic composition was represented by 33 species, distributed in 12 genera; five species not recorded for Ucayali were found. Structurally, the family was represented by 138 individuals/ha with a horizontal distribution similar to an irregular inverted “J”. However, there were different horizontal structures among species. It was determined that 85% of the species were in diameter class I (2.50 to 9.99 cm), being the most abundant Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr. (41.88 individuals/ha); and the most dominant were Brosimum utile (Kunth) Oken (1.71 m2∕ha) and Brosimum alicastrum subsp. bolivarense (Pittier) C.C.Berg (0.90 m2/ha). Likewise, P. laevis and B. utile were the most ecologically important. The information from the present research will allow the establishment of a baseline, which can be used to propose the management of Moraceae in residual forests in the same study area.
Copyright © by EnPress Publisher. All rights reserved.