Since the Reform and Opening up, GDP of the cities on eastern bank of the Pearl River Estuary in Guangdong Province were higher than the eastern bank cities. Therefore, this article aims to modify the urban gravity model combines it with the entropy weight method to calculate urban quality and applies it to measure the degree of connectivity between cities over the past decades. The research aims to explore whether cities with higher economic output have a greater attraction for surrounding cities, and whether the eastern bank cities can also promote the development of the west. Through detailed data collection and analysis, this essay reveals the dynamic changes of the gravity among cities and its influence factors such as economic, transportation and urban development. The research results indicate that the strongest gravitational force between cities on the east and west banks is between Dongguan and Zhongshan, rather than between Shenzhen and cities on the west bank. This demonstrates that the connection between cities on the east and west banks is primarily constrained by geographical factors, and the geographical location of a city influences on surrounding cities significantly. In particular, Dongguan and Zhongshan play a key role in connecting the eastern and western bank of the Pearl River Estuary, rather than Shenzhen, which is traditionally considered to have the highest economic aggregate. In addition, the study also found that the COVID-19 epidemic has had a significant impact on inter-city communication, resulting in a decline in inter-city gravity in recent years.
Cities play a key role in achieving the climate-neutral supply of heating and cooling. This paper compares the policy frameworks as well as practical implementation of smart heating and cooling in six cities: Munich, Dresden and Bad Nauheim in Germany; and Jinan, Chengdu and Haiyan in China, to explore strategies to enhance policy support, financial mechanisms, and consumer engagement, ultimately aiming to facilitate the transition to climate-neutral heating and cooling systems. The study is divided into three parts: (i) an examination of smart heating and cooling policy frameworks in Germany and China over the past few years; (ii) an analysis of heating and cooling strategies in the six case study cities within the context of smart energy systems; and (iii) an exploration of the practical solutions adopted by these cities as part of their smart energy transition initiatives. The findings reveal differences between the two countries in the strategies and regulations adopted by municipal governments as well as variations within each country. The policy frameworks and priorities set by city governments can greatly influence the development and implementation of smart heating and cooling systems. The study found that all six cities are actively engaged in pioneering innovative heating and cooling projects which utilise diverse energy sources such as geothermal, biomass, solar, waste heat and nuclear energy. Even the smaller cities were seen to be making considerable progress in the adoption of smart solutions.
Increasing populations in cities have created challenges for the urban environment and also public health. Today, lacking sport participation opportunities in urban settings is a global concern. This study conceptualizes and develops a theoretical framework that identifies factors associated with effective urban built environments that help shape and reshape residents’ attitude toward sport activities and enhances their participation. Based on a comprehensive review of literature and by following the Stimulus-Organism-Response (SOR) theory and attitude change theory, a four-factor measurement model is proposed for studying urban built environment, including Availability, Accessibility, Design, and Safety. Further examinations are made on how these factors are channeled to transform residents’ attitudes and behavior associated with participating in sport activities, with Affordability as a moderator. Discussions are centered around the viability of the developed framework and its application for future research investigations.
Despite the apparent agreement today on the concept of sustainability, the means to achieve it holistically are still controversial. “Just sustainability” concept has recently gained traction, casting doubt on whether sustainability can be attained under capitalism. On the social level, many recent urban studies have been concerned with the concept of social justice and the distribution of resources and wealth as a means to achieving socially equitable sustainability. In this regard, a few questions are brought up: can social sustainability be achieved under capitalism? Are Islamic built environments a viable alternative? Many contemporary studies have described Islamic built environments as sustainable and strived for defining their sustainability criteria. However, they mostly focused on the built environment’s physical environmental aspects without relating them to the socio-economic spheres. Using the concepts of power and rights as key analytical tools, the paper examines a few capitalist utopian reform approaches and compares them in terms of their ability to achieve just sustainability with Islamic built environments. Several examples from primary Islamic history books will be used to examine Islamic built environments. It is concluded that Islamic built environments have attained the just sustainability that contemporary reform approaches sought to accomplish.
This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.
Copyright © by EnPress Publisher. All rights reserved.