A precise risk assessment in a production line constitutes a significant item to identify susceptible areas where there is a possibility of product quality degradation. This also applies to the precast concrete production line in Indonesia that has a spun pile product. Based on a risk assessment activity conducted in this study, it is proposed to build a traceability model in order to maintain and even improve the spun pile product quality in Indonesia. The approach used was the Neural Network of the perceptron model for weighing and will result in a defined traceability path in the context of reducing defects and even failed spun pile products. The simulation result showed that the model has been able to detect risky path possibilities to reduce product quality. The accumulation result of high-risk and medium-risk paths in this study showed that closer to product finalization, the risk will be higher. It is evident that when assessing Indicators, the order from the highest accumulation value first is Curing & Demolding and Stressing & Spinning at 29% each, Casting at 14%, Forming & Setting at 14%, and lastly Cutting & Heading at 14%. Regarding the risk assessment for activities, the first position is Curing & Demolding and Stressing & Spinning with 30% each, the second is Casting and Forming & Setting with 15% each, and the third is Cutting & Heading with 10%.
In recent times, there has been a surge of interest in the transformative potential of artificial intelligence (AI), particularly within the realm of online advertising. This research focuses on the critical examination of AI’s role in enhancing customer experience (CX) across diverse business applications. The aim is to identify key themes, assess the impact of AI-powered CX initiatives, and highlight directions for future research. Employing a systematic and comprehensive approach, the study analyzes academic publications, industry reports, and case studies to extract theoretical frameworks, empirical findings, and practical insights. The findings underscore a significant transformation catalyzed by AI integration into Customer Relationship Management (CRM). AI enables personalized interactions, fortifies customer engagement through interactive agents, provides data-driven insights, and empowers informed decision-making throughout the customer journey. Four central themes emerge: personalized service, enhanced engagement, data-driven strategy, and intelligent decision-making. However, challenges such as data privacy concerns, ethical considerations, and potential negative experiences with poorly implemented AI persist. This article contributes significantly to the discourse on AI in CRM by synthesizing the current state, exploring key themes, and suggesting research avenues. It advocates for responsible AI implementation, emphasizing ethical considerations and guiding organizations in navigating opportunities and challenges.
This paper delves into the analysis of the physical flow patterns of users and its subsequent influence on their purchasing behavior. The research methodology encompassed surveying a substantial sample size of 400 users actively engaged with travel applications. The gathered data underwent meticulous analysis employing a combination of descriptive statistics and structural equation modeling techniques. The findings from this study have unveiled noteworthy insights into user behavior within travel applications. It is evident that the inclination to engage with the system has a substantial and positive impact on users’ purchase intentions. Moreover, the motivation behind users’ system usage has a direct bearing on their purchase intentions, primarily mediated by the enjoyment derived from the overall experience. This research underscores the pivotal role played by travel applications in the contemporary travel industry landscape. As travelers increasingly rely on digital platforms to plan their trips and make informed choices, understanding the intricate dynamics of user engagement, motivation, and subsequent purchasing decisions within these applications is paramount. This deeper comprehension not only sheds light on consumer behavior but also empowers businesses to tailor their offerings and enhance user experiences, thereby solidifying the indispensable position of travel applications in the ever-evolving travel sector.
This study explores the integration of data mining, customer relationship management (CRM), and strategic management to enhance the understanding of customer behavior and drive revenue growth. The main goal is the use of application of data mining techniques in customer analytics, focusing on the Extended RFM (Recency, Frequency, Monetary Value and count day) model within the context of online retailing. The Extended RFM model enhances traditional RFM analysis by incorporating customer demographics and psychographics to segment customers more effectively based on their purchasing patterns. The study further investigates the integration of the BCG (Boston Consulting Group) matrix with the Extended RFM model to provide a strategic view of customer purchase behavior in product portfolio management. By analyzing online retail customer data, this research identifies distinct customer segments and their preferences, which can inform targeted marketing strategies and personalized customer experiences. The integration of the BCG matrix allows for a nuanced understanding of which segments are inclined to purchase from different categories such as “stars” or “cash cows,” enabling businesses to align marketing efforts with customer tendencies. The findings suggest that leveraging the Extended RFM model in conjunction with the BCG matrix can lead to increased customer satisfaction, loyalty, and informed decision-making for product development and resource allocation, thereby driving growth in the competitive online retail sector. The findings are expected to contribute to the field of Infrastructure Finance by providing actionable insights for firms to refine their strategic policies in CRM.
Alginate-silver nanocomposites in the form of spherical beads and films were prepared using a green approach by using the aqueous extract of Ajwa date seeds. The nanocomposites were fabricated by in situ reduction and gelation by ionotropic crosslinking using calcium ions in solution. The rich phytochemicals of the date seed extract played a dual role as a reducing and stabilizing agent in the synthesis of silver nanoparticles. The formation of silver nanoparticles was studied using UV-Vis absorption spectroscopy, and a distinct surface plasmon resonance peak at 421 nm characteristic of silver nanoparticles confirmed the green synthesis of silver nanoparticles. The morphology of the nanocomposite beads and film was compact, with an even distribution of silver nanoclusters. The catalytic property of the nanocomposite beads was evaluated for the degradation of 2-nitrophenol in the presence of sodium borohydride. The degradation followed pseudo-first-order kinetics with a rate constant of 1.40 × 10−3 s−1 at 23 ℃ and an activation energy of 18.45 kJ mol−1. The thermodynamic parameters, such as changes in enthalpy and entropy, were evaluated to be 15.22 kJ mol−1 and −197.50 J mol−1 K−1, respectively. The nanocomposite exhibited properties against three clinically important pathogens (gram-positive and gram-negative bacteria).
Copyright © by EnPress Publisher. All rights reserved.