Leadership behavior is a critical component of effective management, significantly influencing organizational success. While extensive research has examined key success factors in road management, the specific role of leadership behaviors in road usage charging (RUC) management remains underexplored. This study addresses this gap by identifying and analyzing leadership behavior dimensions and their impact on management performance within the RUC context. Using a mixed-methods approach, focus group discussions with industry practitioners were conducted to define eight leadership behavior dimensions: Central-Level Leadership Guidance (LE1), Local-Level Leadership Guidance (LE2), Central-Level Leadership Commitment (LE3), Local-Level Leadership Commitment (LE4), Subordinate Understanding from Central-Level Leadership (LE5), Subordinate Understanding from Local-Level Leadership (LE6), Work Motivation (LE7), and Understanding Rights and Obligations (LE8). These dimensions were further validated through a quantitative survey distributed to 138 professionals involved in RUC management in Vietnam, with the data analyzed using structural equation modeling (SEM) and partial least squares (PLS) estimation. The findings revealed that LE3 (Central-Level Leadership Commitment) had the strongest direct impact on management performance (MP) and mediated the relationships between other leadership dimensions and management outcomes. This study contributes to the theoretical understanding of leadership in RUC management by highlighting the centrality of leadership commitment and offering practical insights for improving leadership practices to enhance organizational performance in infrastructure management.
The aim of our study is to provide information on how and to what extent professionals of art institutions in Hungary and Slovakia (contemporary galleries and museums) use artificial intelligence in their work processes. Our research focuses on the extent to which these institutions use artificial intelligence in the development of the institution’s operational strategy, or how they can embed the assumed usefulness of artificial intelligence in the operation of the institution, be it the creation of an exhibition, the textual processing of the professional life of an artist, or a about a tool that shapes the gallery’s marketing strategy. We conducted ten in-depth interviews in the two countries, the interviewees were selected using the snowball method. The interview took place among professionals and professionally credible artists who are actively active in contemporary fine art life. The results revealed that the use of artificial intelligence as a tool in the creative work processes is not a requirement in the field of culture, neither in Hungary nor in Slovakia. All the interviewees already had professional experience with AI, 90% of those interviewed would like to deepen their knowledge of the creative use methods of AI, e.g., by creating working groups in the workplace on an experimental basis. Based on our conclusions, we can say that artificial intelligence currently has no conscious strategic use in contemporary art institutions. It can be said that creative professionals are aware of the possibilities of using artificial intelligence in their own field of image, video, and text creation, but there is uncertainty on the part of creators and curators when it comes to copyright. The in-depth interviews provided source material for the compilation of a standardized set of questions for a larger survey of 300-500 people, proportional to the sample, so our presented results are partial results of a larger research.
This study aims to explore the factors influencing people’s intention to use home fitness mobile apps in the post-pandemic era. By incorporating the perspective of playfulness into the decomposed theory of planned behavior, it seeks to construct a behavioral model for the public's use of AR sports games for home exercise. The research focuses on Active Arcade users residing in Taiwan, employing the snowball sampling method to conduct an online questionnaire survey. A total of 340 valid questionnaires were collected and analyzed using linear structural equations. The study reveals three main findings: first, the behavioral model for Active Arcade users constructed based on the decomposed theory of planned behavior demonstrates a good fit; second, users’ attitudes, subjective norms, and perceived behavioral control have a positive and significant impact on behavioral intention; third, perceived usefulness, perceived ease of use, and perceived playfulness all positively and significantly influence attitudes, with perceived playfulness having the highest impact coefficient; fourth, perceived benefits of exercise are the most crucial factor affecting subjective norms; and fifth, convenience technologies are the key factor influencing perceived behavioral control. This study provides valuable insights for theory and management practice, offering guidance on the use of home fitness apps in the post-pandemic era while addressing research limitations and suggesting future directions.
This review paper delves into the intricate landscape of the digital economy, focusing on the multifaceted interplay between innovation, competition, and consumer dynamics. It investigates the transformative impact of digital technologies on market structures and consumer behaviors, spanning areas such as e-commerce, online publishing, taxation, and big data challenges. By analyzing network effects, market concentration, and the influence of key players like Google and Amazon, this study draws on insights from previous research. Furthermore, it examines evolving regulations with an emphasis on consumer protection, competition law, and privacy concerns. Through a comprehensive exploration of the digital ecosystem, this paper offers a nuanced understanding of how businesses, consumers, and policymakers navigate the complexities of the digital marketplace.
In the realm of contemporary business, Business Intelligence (BI) offers significant potential for informed decision-making, particularly among executives. However, despite its global popularity, BI adoption in Malaysia’s service sector remains relatively low, even in the face of extensive data generation. This study explores the factors influencing BI adoption in this sector, employing the Technology Acceptance Model (TAM) as its conceptual framework. Drawing on relevant BI literature, the study identifies key TAM factors that impact BI adoption. Using SEM modelling, it analyses quantitative data collected from 45 individuals in managerial roles within Malaysia’s service sector, particularly in the Klang Valley. The findings highlight the crucial role of Perceived Usefulness in influencing the Behavioral Intention to adopt BI, serving as a mediating factor between Computer Self-efficacy and BI adoption. In contrast, Perceived Ease of Use does not have a direct impact on BI adoption and does not mediate the relationship between Computer Self-efficacy and Behavioral Intention. These insights demonstrate the complex nature of BI adoption, emphasizing the importance of Perceived Usefulness in shaping Behavioral Intentions. The outcomes of the study aim to guide executives in Malaysia’s service sector, outlining key considerations for successful BI adoption.
This study examines the microeconomic determinants influencing remittance flows to Vietnam, considering factors such as gender (SEX), age (AGE), marital status (MS), income level (INC), educational level (EDU), financial status (FS), migration expenses (EXP), and foreign language proficiency (LAN). The study analyzes the impact of these factors on both the volume (REM_VL) and frequency of remittance flows (REM_FR), employing ordered logistic regression on survey data collected from Vietnamese migrants residing in Asia, Europe, the Americas, and Oceania. The estimations reveal that migrants’ income, age, educational level, and migration costs significantly positively influence remittance flows to Vietnam. Conversely, the financial status of migrants’ families in the home country negatively impacts these flows. Gender and migration costs primarily influence the frequency of remittance transfers, but they do not have a significant effect on the volume of remittances. Although foreign language proficiency was introduced as a novel variable of the models, it does not demonstrate any significant impact in this study. Furthermore, the survey data and regression estimates suggest that two primary motivations drive remittances to Vietnam: altruistic motives and implicit loan agreements. This research contributes to a deeper understanding of remittance e behavior, particularly in the context of Vietnam’s status as a major labor exporter. The findings provide valuable insights for policymakers and researchers seeking to optimize remittance flows and their impact on the Vietnamese economy. By understanding the complex interplay of factors influencing remittance behavior, policymakers can design effective strategies to support migrants and encourage increased remittance inflows, ultimately contributing to economic development and poverty reduction.
Copyright © by EnPress Publisher. All rights reserved.