This paper is the third in a series focused on bridging the gap between secondary and higher education. Our primary objective is to develop a robust theoretical framework for an innovative e-business model called the Undergraduate Study Programme Search System (USPSS). This system considers multiple criteria to reduce the likelihood of exam failure or the need for multiple retakes, while maximizing the chances of successful program completion. Testing of the proposed algorithm demonstrated that the Stochastic Gradient Boosted Regression Trees method outperforms the current method used in Lithuania for admitting applicants to 47 educational programs. Specifically, it is more accurate than the Probabilistic Neural Network for 25 programs, the Ensemble of Regression Trees for 24 programs, the Single Regression Tree for 18 programs, the Random Forest Regression for 16 programs, the Bayesian Additive Regression Trees for 13 programs, and the Regression by Discretization for 10 programs.
Central Sulawesi has been grappling with significant challenges in human development, as indicated by its Human Development Index (HDI). Despite recent improvements, the region still lags behind the national average. Key issues such as high poverty rates and malnutrition among children, particularly underweight prevalence, pose substantial barriers to enhancing the HDI. This study aims to analyze the impact of poverty, malnutrition, and household per capita income on the HDI in Central Sulawesi. By employing panel data regression analysis over the period from 2018 to 2022, the research seeks to identify significant determinants that influence HDI and provide evidence-based recommendations for policy interventions. Utilizing panel data regression analysis with a Fixed Effect Model (FEM), the study reveals that while poverty negatively influences with HDI, underweight prevalence is not statistically significant. In contrast, household per capita income significantly impacts HDI, with lower income levels leading to declines in HDI. The findings emphasize the need for comprehensive policy interventions in nutrition, healthcare, and economic support to enhance human development in the region. These interventions are crucial for addressing the root causes of underweight prevalence and poverty, ultimately leading to improved HDI and overall well-being. The originality of this research lies in its focus on a specific region of Indonesia, providing localized insights and recommendations that are critical for targeted policy making.
The explosion of information technology, besides its positive aspects, has raised many issues related to personal information and personal data in the network environment. Because children are vulnerable to abuse, fraud and exploitation, protecting children’s personal information and personal data is always of concern to many countries. From the concept and characteristics of personal information and personal data of children in Europe, the United States and Vietnam, it can be seen that children’s personal information and personal data protection is very necessary in every country today. This research focuses on the age considered a child, the child’s consent and his or her parental consent when providing and processing personal information or personal data of children under the laws of the EU, US and Vietnam. Therefore, the article proposes some recommendations related to the child’s consent and his or her parental consent in protecting children’s personal data in Vietnam.
This study aims to use dialectical thinking to explore the impacts and responses of Artificial Intelligence (AI) empowerment on students’ personalized learning. The effect of AI empowerment on student personalization is dissected through a literature review and empirical cases. The study finds that AI plays a significant role in promoting personalized learning by enhancing students’ learning effectiveness through intelligent recommendation, automated feedback, improving students’ independent learning ability, and optimizing learning paths, however, the wide application of AI also brings problems such as technological dependence, cheating in exams, weakening of critical thinking ability, educational fairness, and data privacy protection to students. The study proposes recommendations to strengthen technology regulation, enhance the synergy between teachers and AI, and optimize the personalized learning model. AI-enabled personalized learning is expected to play a greater role in improving learning efficiency and educational fairness.
Copyright © by EnPress Publisher. All rights reserved.