The number of accidents at level railway crossings, especially crossings without gate barriers/attendants, is still very high due to technical problems, driving culture, and human error. The aim of this research is to provide road maps application based on ergonomic visual displays design that can increase awareness level for drivers before crossing railway crossings. The double awareness driving (DAD) map information system was built based on the waterfall method, which has 4 steps: defining requirements, system and software design, unit testing, and implementation. User needs to include origin-destination location, geolocation, distance & travel time, directions, crossing information, and crossing notifications. The DAD map application was tested using a usability test to determine the ease of using the application used the System Usability Scale (SUS) questionnaire and an Electroencephalogram (EEG) test to determine the increase in concentration in drivers before and immediately crossing a railway crossing. Periodically, the application provides information on the driving zone being passed; green zone for driving distances > 500 m to the crossing, the yellow zone for distances 500m to 100m, and the red zone for distances < 100 m. The DAD map also provides information on the position and speed of the nearest train that will cross the railway crossing. The usability test for 10 respondents giving SUS score = 97.5 (satisfaction category) with a time-based efficiency value = 0.29 goals/s, error rate = 0%, and a success rate of 93.33%. The cognitive ergonomic testing via Electroencephalogram (EEG) produced a focus level of 21.66%. Based on the results of DAD map testing can be implemented to improve the safety of level railroad crossings in an effort to reduce the number of driving accidents.
In the current competitive global marketplace, innovation is key for high-tech firms to thrive. Open innovation offers a promising approach, but its effectiveness remains unclear. Therefore, this research explored the connection between open innovation, knowledge management capability, and innovation performance within high-tech firms. We used a mediation approach to highlight the central role of knowledge management capability in the relationship between open innovation and innovation performance. We used a survey questionnaire approach to collect data from the 462 employees of high-tech firms on open innovation, knowledge management capability, and innovation performance using a convenient sampling technique. We used partial least square structural equations modeling through PLS-SEM statistics. Results indicated that open innovation has a direct, positive and significant connection with innovation performance. Similarly, the current research serves as a pioneering exploration into mediation analysis, highlighting the mediating role of knowledge management capability that influences the relationship between open innovation and innovation performance. Empirical studies offer valuable insights for leaders of high-tech firms, guiding them to identify effective knowledge management practices and determine the ideal extent of open innovation to boost innovation performance. The current study reveals novel insights into the benefits of knowledge management capability in enhancing open innovation efforts within firms. This research provides valuable implications and future research directions.
Global warming is a thermodynamic problem. When excess heat is added to the climate system, the land warms more quickly than the oceans due to the land’s reduced heat capacity. The oceans have a greater heat capacity because of their higher specific heat and the heat mixing in the upper layer of the ocean. Thermodynamic Geoengineering (TG) is a global cooling method that, when deployed at scale, would generate 1.6 times the world’s current supply of primary energy and remove carbon dioxide (CO2) from the atmosphere. The cooling would mirror the ostensible 2008–2013 global warming hiatus. At scale, 31,000 1-gigawatt (GW) ocean thermal energy conversion (OTEC) plants are estimated to be able to: a) displace about 0.8 watts per square meter (W/m2) of average global surface heat from the surface of the ocean to deep water that could be recycled in 226-year cycles, b) produce 31 terawatts (TW) (relative to 2019 global use of 19.2 TW); c) absorb about 4.3 Gt CO2 per year from the atmosphere by cooling the surface. The estimated cost of these plants is $2.1 trillion per year, or 30 years to ramp up to 31,000 plants, which are replaced as needed thereafter. For example, the cost of world oil consumption in 2019 was $2.3 trillion for 11.6 TW. The cost of the energy generated is estimated at $0.008/KWh.
COVID-19 has presented considerable challenges to fiscal budget allocations in developing countries, significantly affecting decisions regarding number of investments in the transport sector where precise resource allocation is required. Elucidating the long-term relationship between public transport investment and economic growth might enable policymaker to effectively make a decision in regard to those budget allocation. Our paper then utilizes Thailand as a case study to analyze the effects on economic growth in a developing country context. The study employs Cointegration and Vector Error Correction Model (VECM) techniques to account for long-term correlations among explanatory variables during 1991–2019. The statistical findings reveal a significantly positive correlation between transport investment and economic growth by indicating an increase of 0.937 in economic growth for every one-percent increment in transport investment (S.D. = 0.024, p < 0.05). This emphasizes the potential of expanding the transport investment to recover Thailand’s economy. Furthermore, in terms of short-term adjustments, our results indicate that transport investment can significantly mitigate the negative impact of external shocks by 0.98 percent (p < 0.05). These findings assist policymakers in better managing national budget allocations in the post-Covid-19 period, allowing them to estimate the duration of crowding-out effects induced by shocks more effectively.
In regard to national development (ND), this review article (which is basically a perspective approach) presents retroactive and forward-looking perspectives on university education in Nigeria. In the past, particularly during the 1970s, the Nigerian university (NU) sector was among the most outstanding in Africa as well as globally. The best institutions drew students from around Africa, who flocked to Nigeria to study. The NU structure evidently contained four essential components for an international and effective university system, viz., world-class instructors, world-class students, a conducive learning environment, and global competitiveness. The NU structure, nevertheless, has undergone some neglect over the past thirty years and lost its distinctive identity, which raises questions about its function and applicability at the current stage of ND. Hence, some retrospective and forward-looking observations on university education in Nigeria in connection to ND are conveyed in this perspective article uses basically published articles and other relevant literature, as well as other sources and data from available literature. Hitherto, there is an urgent need for reinforcement of the university system in order to give it the desired and comparable international quality and functionality needed to meet the demands of current issues and the near future. However, this article conveys an intense belief and conviction that the NU system is still important for both the political and socioeconomic development (growth) of the nation. The article concludes by recommending the way forward in this regard.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
Copyright © by EnPress Publisher. All rights reserved.