There is no denying that the COVID-19 pandemic resulted in significant stress worldwide and impacted practically every aspect of human activity. The impacts of this deadly virus on education are not seen as gaining much-needed focus from the scientific research community. The majority of educational institutions globally switched to online instruction during the COVID-19 pandemic. However, there were considerable differences in the technical readiness of various nations. In this regard, the study’s attempt to provide a way forward for how the educational sector ought to manage the challenges brought on by COVID-19 issues in support of online educational activities. Since some of the consequences that resulted have an impact on the educational sector, the answers presumably also should have included innovations that would improve scientific research to lessen its effects. Particularly, it appears there is still much that has to be done about the impact of the COVID-19 pandemic on the educational sector. Hence, this perspective review study aims to explore the potential relationship between the COVID-19 pandemic and the educational sector while suggesting a way forward.
Green manufacturing is increasingly becoming popular, especially in lubricant manufacturing, as more environmentally friendly substitutes for mineral base oil and synthetic additives are being found among plant extracts and progress in methodologies for extraction and synthesis is being made. It has been observed that some of the important performance characteristics need enhancement, of which nanoparticle addition has been noted as one of the effective solutions. However, the concentration of the addictive that would optimised the performance characteristics of interest remains a contending area of research. The research was out to find how the concentration of green synthesized aluminum oxide nanoparticles in nano lubricants formed from selected vegetable oils influences friction and wear. A bottom-up green synthesis approach was adopted to synthesize aluminum oxide (Al2O3) from aluminum nitrate (Al(NO3)3) precursor in the presence of a plant-based reducing agent—Ipomoea pes-caprae. The synthesized Al2O3 nanoparticles were characterized using TEM and XRD and found to be mostly of spherical shape of sizes 44.73 nm. Al2O3 nanoparticles at different concentrations—0.1 wt%, 0.3 wt%, 0.5 wt%, 0.7 wt%, and 1.0 wt%—were used as additives to castor, jatropha, and palm kernel oils to formulate nano lubricants and tested alternately on a ball-on-aluminum (SAE 332) and low-carbon steel Disc Tribometer. All the vegetable-based oil nano lubricants showed a significant decrease in the coefficient of friction (CoF) and wear rate with Ball-on-(aluminum SAE 332) disc tribometer up to 0.5wt% of the nanoparticle: the best performances (eCOF = 92.29; eWR = 79.53) came from Al2O3-castor oil nano lubricant and Al2O3-palm kernel oil; afterwards, they started to increase. However, the performance indices displayed irregular behaviour for both COF and Wear Rate (WR) when tested on a ball-on-low-carbon steel Disc Tribometer.
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.
Purpose: The aim of the study is to apply policy analysis matrix (PAM) to identify international competitiveness of marketing channels and policy impacts of government on each marketing channels. Methodology: Policy analysis matrix is employed to evaluate influences of macroeconomic policy on the Tuong-mango value chain. The study investigated 213 sampling observation of eight main actors in chain. Findings: The findings indicate that although domestic channel 4 exhibits competitiveness (Private cost ratio (PRC) < 1), channels 1, 2, and 3 possess both comparative and competitive advantages (PRC < 1, Domestic Resource Cost (DRC) < 1, and social benefit-cost (SBC) > 1). The government’s strategy on production protection, referred to as Nominal protection coefficient on tradable output (NPCO) 0.16, together with the plan for enhancing added value, denoted as Effective protection coefficient (EPC) 0.14 and Subsidy ratio to producers (SRP) −0.18, place a significant emphasis on the first export channel. The government’s subsidy plan grants preferential treatment to Channel 4 in terms of the pricing of commercially available products, with a Nominal protection coefficient on tradable input (NPCI) value of 0.75. A value-added strategy is implemented for export channels 2 and 3, which have EPCs of 0.76 and 0.85, respectively. Policy implications: If the tradable cost is modified by 20%, there will be a change in the ratio of DRC, SBC, EPC, and SRP. While the EPC does not see a 20% reduction in domestic prices, the DRC and SBC do benefit from this cost reduction. A reduction of 20% in the local cost, coupled with a corresponding rise of 20% in the Free on Board (FOB) price, would result in a significant elevation of the SRP for export channels 1, 2, and 3. Conclusion: This is as evidence for the combination of quantitative is a dynamic tool in the policymaking process to ensure targets, constrictions, and consistent policies for agricultural fields. This permits policies to be changed in steps with an alteration in the economy and priorities set up for the tropical fruits and vegetables field.
The main objective of this study was comparative advantages analysis at social price of Num-mango in the export channels. The examination of the domestic resource cost per shadow exchange rate (DRC/SER) ratio provides insights into the comparative advantage of the trading system in the Num-mango industry. A comprehensive study was conducted, with a total of 317 observations, with a specific emphasis on the significant individuals in Vinh Long, Vietnam. The comparative advantage of the Num-mango commerce system was inferred from a DRC/SER ratio below one, which may be attributed to the existence of two distinct export channels. The DRC/SER in export channel 1 exhibited values of 0.55, 0.67, and 0.53 over the three seasons. In season 1, export channel 2 had a score of 0.42, which then was 0.79 in season 2. The value of export channel 2 had a consistent upward trend during season 3, reaching its highest point of 0.3. It is recommended that regulators and governments provide export-focused incentives that prioritize the maximum comparative advantage. This study examines the concept of comparative advantage within export supply chains, specifically in relation to a diverse selection of tropical fruits and vegetables. Furthermore, it provides empirical evidence that supports the applicability and reliability of the Ricardian model.
Copyright © by EnPress Publisher. All rights reserved.