In the Fourth Industrial Revolution (4IR) era, the rapid digitalisation of services poses both opportunities and challenges for the banking sector. This study addresses how adopting artificial intelligence (AI) and online and mobile banking advancements can influence customer satisfaction, particularly in Kaduna State, Nigeria. Despite significant investments in AI and digital banking technologies, banks often struggle to align these innovations with customer expectations and satisfaction. Using Structural Equation Modeling (SEM), this research investigates the impact of customer satisfaction with online banking (C_O) on AI integration (I_A) and mobile banking convenience (C_M). The SEM model reveals that customer satisfaction with online banking significantly influences AI integration (path coefficient of 0.40) and mobile banking convenience (path coefficient of 0.68). These results highlight a crucial problem: while technological advancements in banking are growing, their effectiveness is highly dependent on customer satisfaction with existing digital services. The study underscores the need for banks to prioritise enhancing online banking experiences as a strategic lever to improve AI integration and mobile banking convenience. Consequently, the research recommends that Nigerian banks develop comprehensive frameworks to evaluate and optimise their technology integration strategies, ensuring that technological innovations align with customer needs and expectations in the rapidly evolving digital landscape.
The Oued Kert watershed in Morocco is essential for local biodiversity and agriculture, yet it faces significant challenges due to meteorological drought. This research addresses an urgent issue by aiming to understand the impacts of drought on vegetation, which is crucial for food security and water resource management. Despite previous studies on drought, there are significant gaps, including a lack of specific analyses on the seasonal effects of drought on vegetation in this under-researched region, as well as insufficient use of appropriate analytical tools to evaluate these relationships. We utilized the Standardized Precipitation Index (SPI) and the Normalized Difference Vegetation Index (NDVI) to analyze the relationship between precipitation and vegetation health. Our results reveal a very strong correlation between SPI and NDVI in spring (98%) and summer (97%), while correlations in winter and autumn are weaker (66% and 55%). These findings can guide policymakers in developing appropriate strategies and contribute to crop planning and land management. Furthermore, this study could serve as a foundation for awareness and education initiatives on the sustainable management of water and land resources, thereby enhancing the resilience of local ecosystems in the face of environmental challenges.
The native peoples of the State of Mexico, especially the Mazahua community, present a high degree of marginality and food vulnerability, causing their inhabitants to be classified within the poor and extremely poor population. The objective of the research is to propose a food vulnerability index for the Mazahua community of the State of Mexico through the induction-deduction method, contrasting the existing literature with a semi-structured exploratory interview to identify the main factors that affect the native peoples. The study population was selected taking into account the number of inhabitants and poverty levels. The sources of information, in addition to documentary sources, were key informants and visits to Mazahua families that facilitated information about the different variables: natural, economic, social, cultural component, degree of adaptability and resilience for the creation and better understanding of the food vulnerability index in the communities under study.
The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
This article examines the factors influencing sustainable entrepreneurship (SE) in Arab countries, focusing on economic, social, and technological dimensions. Using data from various sources and structural equation modeling, the study explores the relationships between these factors and SE sustainability. The findings reveal that economic factors, such as GDP per capita and foreign direct investment (FDI), positively influence SE sustainability, emphasizing the need for a conducive economic environment. Social factors, measured by Internet usage and the Human Development Index (HDI), also significantly impact SE sustainability, highlighting the importance of access to information and education. However, technological factors like patent applications and high-tech exports did not show a significant positive relationship with SE sustainability, suggesting a minimal direct impact on SE longevity in Arab countries. These insights have implications for policymakers, stressing the importance of fostering economic growth and enhancing social infrastructure to support sustainable entrepreneurial ecosystems. Despite its robust methodology, the study has limitations, such as incomplete data for certain countries, affecting the generalizability of the findings. Future research could explore additional factors influencing SE sustainability, further investigate the role of technology, and expand the geographical scope to include more Arab countries.
Copyright © by EnPress Publisher. All rights reserved.