As the technical support for economic activities and social development, standards play a great role in modern society. However, with the increasing digitization of various industries, the traditional form of standards can no longer meet the needs of the new era, and there is an urgent need to digitally transform standards using advanced technologies. The digital transformation of standards involves the standard itself and all stages of its life cycle, is a very complex systematic project, in the transformation process, technology plays a key role. Therefore, this paper summarizes the key technologies involved in the process of digital transformation of standards, sorted out and evaluated them according to different purposes for which they were used, while giving the digitalization of standards transformation technology development trends and planning as well as typical cases, hoping to provide a comprehensive and clear perspective for those engaged in the related work, as well as reference for the subsequent research and application of digital transformation of standards.
The study’s purpose is to evaluate the influence of some factors of the model of planned behavior (TPB) and the perceived academic support of the university on the attitude toward entrepreneurship and entrepreneurial intention of students. The results of Structural Equation Modeling (SEM) linear structural model analysis with primary data collected from 1162 students indicated that entrepreneurial intention is influenced by attitude toward entrepreneurship, subjective norm, perceived educational support, and perceived concept development support. In addition, this study also found the positive influence of perceived educational support, concept development support, and business development support on attitude towards entrepreneurship. Interestingly, the influence of perceived business development support on entrepreneurial intention was rejected, and personal innovativeness is demonstrated to promote an attitude toward entrepreneurship. Notably, this study also highlights the moderating role of personal innovativeness on the relationship between attitude toward entrepreneurship and entrepreneurial intention. Based on these findings, several implications were suggested to researchers, universities, and policymakers.
The expanding blue economy, marked by its focus on sustainable use of ocean resources, offers enormous opportunity for Small and Medium-sized Enterprises (SMEs). However, for SMEs to properly integrate and succeed in this economy, they must first have a thorough awareness of the sector’s challenges and prospects. This research used a scoping review and a qualitative study to identify the challenges and opportunities facing SMEs operating in the blue economy. The study discovered recurring themes and gaps in the existing literature by conducting an extensive examination of scholarly publications. The key challenges identified include complicated regulatory frameworks, restricted access to funding, infrastructure restrictions, talent deficiencies, government support, and market outreach. In-depth interviews with Malaysian SME leaders, industry stakeholders, and policymakers were conducted to decipher these findings. The results of interviews confirmed the relevance of the regulatory framework, infrastructure restrictions, talent deficit, and market access challenges in the Malaysian context. In particular, the study revealed emerging opportunities for Malaysian blue SMEs in sectors such as renewable energy, sustainable fisheries, marine biotechnology, and ecotourism. The study emphasizes the importance of an encouraging policy framework, knowledge-sharing platforms, and capacity building activities. It finishes by underlining the ability of SMEs to drive a sustainable and thriving blue economy, if challenges are systematically handled, and opportunities are appropriately capitalized.
In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
This study aims to predict whether university students will make efficient use of Artificial Intelligence (AI) in the coming years, using a statistical analysis that predicts the outcome of a binary dependent variable (in this case, the efficient use of AI). Several independent variables, such as digital skills management or the use of Chat GPT, are considered.The results obtained allow us to know that inefficient use is linked to the lack of digital skills or age, among other factors, whereas Social Sciences students have the least probability of using Chat GPT efficiently, and the youngest students are the ones who make the worst use of AI.
Copyright © by EnPress Publisher. All rights reserved.