Nanoscale zero-valent iron (nZVI) is thought to be the most effective remediation material for contaminated soil, especially when it comes to heavy metal pollutants. In the current high-industrial and technologically advanced period, water pollution has emerged as one of the most significant causes for concern. In this instance, silica was coated with zero-valent iron nanoparticles at 650 and 800 ℃. Ferric iron with various counter-ions, nitrate (FN) and chloride (FC), and sodium borohydride as a reducing agent were used to create nanoscale zero-valent iron in an ethanol medium with nitrogen ambient conditions. X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) techniques were employed to describe the structures of the generated zero-valent iron nanoparticles. Further, we investigated the electrical properties and adsorption characteristics of dyes such as alizarin red in an aqueous medium. As a result, zero-valent nano iron (nZVI), a core-shell environmental functional material, has found extensive application in environmental cleanup. The knowledge in this work will be useful for nZVI-related future research and real-world applications.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
In response to the challenges of climate change, this study explores the use of moringa pod powder as reinforcement in the manufacture of compressed earth bricks to promote sustainable building materials. The objective is to evaluate the impact of African locust bean pod powder on the mechanical properties of the bricks. Two types of soils from Togo were characterized according to geotechnical standards. Mixtures containing 8% African locust bean pod powder at various particle sizes (0.08 mm, 2 mm, and between 2 and 5 mm) were formulated and tested for compression and tensile strength. The results show that the addition of African locust bean pod reduces the mechanical strength of the bricks compared to the control sample without pods, with strengths ranging from 0.697 to 0.767 MPa, compared to 0.967 to 1.060 MPa for the control. However, the best performances for the mixtures were obtained with a fineness of less than 2 mm. This decrease in performance is attributed to several factors, including inadequate water content and suboptimal preparation and compaction methods. Optimizing formulation parameters is necessary to maximize the effectiveness of African locust bean pods. This work highlights the valorization of agro-industrial waste, paving the way for a better understanding of bio-based materials and future research for sustainable construction.
This review provides an overview of the importance of nanoparticles in various fields of science, their classification, synthesis, reinforcements, and applications in numerous areas of interest. Normally nanoparticles are particles having a size of 100 nm or less that would be included in the larger category of nanoparticles. Generally, these materials are either 0-D, 1-D, 2-D, or 3-D. They are classified into groups based on their composition like being organic and inorganic, shapes, and sizes. These nanomaterials are synthesized with the help of top-down bottom and bottom-up methods. In case of plant-based synthesis i.e., the synthesis using plant extracts is non-toxic, making plants the best choice for producing nanoparticles. Several physicochemical characterization techniques are available such as ultraviolet spectrophotometry, Fourier transform infrared spectroscopy, the atomic force microscopy, the scanning electron microscopy, the vibrating specimen magnetometer, the superconducting complex optical device, the energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy to investigate the nanomaterials. In the meanwhile, there are some challenges associated with the use of nanoparticles, which need to be addressed for the sustainable environment.
The objective of this research was to evaluate the unit rates of MSW generation in Cumba in the years 2016 and 2022. The calculations were based on the weights of the MSW disposed in the dump located 5 km from the city of Cumba since 2012. The GPC, physical composition, density, humidity were determined in the years 2016 and 2022, studied according to the methodology and group classification of Peruvian regulations. The results show that 5.45 Tn/day−1 are generated in 2016, 4.37 Tn/day−1 in 2022; according to its physical composition, 82% RO, 14% MICVC and 4% MISVC in 2016; 77% RO, 16% MICVC, 7% MISVC in 2022; density 137.90 kg/m−3 in 2016 and 172.69 kg/m−3 in 2022; humidity 67.67% in 2016 and 63.43% in 2022. It was also found that in 100.00% there is no solid waste treatment; Everything generated in homes, businesses and streets is evacuated to the final disposal site, which is a dump. In 2022, Cumba acquired 10 hectares to have adequate sanitary infrastructure and begin the closure and recovery of its current dump. This study will contribute to providing accurate data on MSW generation that allows the local government to promote the optimization of collection routes and schedules, resulting in cost savings and reduction of carbon emissions in the Amazon Region. Therefore, it is necessary to raise awareness at all levels of society through various means of communication and education, so that the risks of spreading health risks can be minimized by improving MSW management.
Our environment has been significantly impacted by man-made pollutants, primarily due to industries making substantial use of synthetic chemicals, resulting in significant environmental consequences. In this research investigation, the co-precipitation approach was employed for the synthesis of cellulose-based ferric oxide (Fe2O3/cellulose) and copper oxide nanoparticles (CuOx-NPs). Scanning electron microscopy (SEM) analyses were conducted to determine the properties of the newly synthesised nanoparticles. Furthermore, the synthesized nanoparticles were employed for eliminating chromium from aqueous media under various conditions, including temperature, contact time, adsorbent concentration, adsorbate concentration, and pH. Additionally, the synthesised materials were used to recover Cr(VI) ions from real samples, including tap water, seawater, and industrial water, and the adsorptive capacity of both materials was evaluated under optimal conditions. The synthesis of Fe2O3/cellulose and CuOx-NPs proved to be effective, as indicated by the outcomes of the study.
Copyright © by EnPress Publisher. All rights reserved.