Global warming is a problem that affects humanity; hence, crisis management in the face of natural events is necessary. The aim of the research was to analyze the passage of Hurricane Otis through Acapulco from the theoretical perspective of crisis management, to understand the socio-environmental, economic, and decision-making challenges. For data collection, content analysis and hemerographic review proved useful, complemented by theoretical contrastation. Findings revealed failures in communication by various government actors; the unprecedented growth of Hurricane Otis led to a flawed crisis management. Among the physical, economic, environmental, and social impacts, the latter stands out due to the humanitarian crisis overflow. It is the first time that Acapulco, despite having a tradition in risk management against hydrometeorological events, faces a hurricane of magnitude five on the Saffir-Simpson scale. Ultimately, the city was unprepared to face a category five hydrometeorological event; institutional responses were overwhelmed by the complexity of the crisis, and the community came together to improve its environment and make it habitable again.
The intensification of urbanization worldwide, particularly in China, has led to significant challenges in maintaining sustainable urban environments, primarily due to the Urban Heat Island (UHI) effect. This effect exacerbates urban thermal stress, leading to increased energy consumption, poor air quality, and heightened health risks. In response, urban green spaces are recognized for their role in ameliorating urban heat and enhancing environmental resilience. This paper has studied the microclimate regulation effects of three representative classical gardens in Suzhou—the Humble Administrator’s Garden, the Lingering Garden and the Canglang Pavilion. It aims to explore the specific impacts of water bodies, vegetation and architectural features on the air temperature and relative humidity within the gardens. With the help of Geographic Information System (GIS) technology and the Inverse Distance Weighted (IDW) spatial interpolation method, this study has analyzed the microclimate regulation mechanisms in the designs of these traditional gardens. The results show that water bodies and lush vegetation have significant effects on reducing temperature and increasing humidity, while the architectural structures and rocks have affected the distribution and retention of heat to some extent. These findings not only enrich our understanding of the role of the design principles of classical gardens in climate adaptability but also provide important theoretical basis and practical guidance for the design of modern urban parks and the planning of sustainable urban environments. In addition, the study highlights GIS-based spatial interpolation as a valuable tool for visualizing and optimizing thermal comfort in urban landscapes, providing insights for developing resilient urban green spaces.
With the increasing climate change crisis, the ongoing global energy security challenges, and the prerequisites for the development of sustainable and affordable energy for all, the need for renewable energy resources has been highlighted as a global aim of mankind. However, the worldwide deployment of renewable energy calls for large-scale financial and technological contributions which many States cannot afford. This exacerbates the need for the promotion of foreign investments in this sector, and protecting them against various threats. International Investment Agreements (IIAs) offer several substantive protections that equally serve foreign investments in this sector. Fair and Equitable Treatment (FET) clauses are among these. This is a flexible standard of treatment whose boundaries are not clearly defined so far. Investment tribunals have diverse views of this standard. Against this background, this article asks: What are the prominent international renewable energy investment threats, and how can FET clauses better contribute to alleviating these concerns? Employing a qualitative method, it analyses the legal aspects and properties of FET and concludes that the growing security and regulatory threats have formed a sort of modern legitimate expectations on the part of renewable energy investors who expect host states to protect them against such threats. Hence, IIAs and tribunals need to uphold a definite and broadly applicable FET approach to bring more consistency and predictability to arbitral awards. This would help deter many unfavourable practices against investments in this sector.
This study investigated the variability of climate parameters and food crop yields in Nigeria. Data were sourced from secondary sources and analyzed using correlation and multivariate regression. Findings revealed that pineapple was more sensitive to climate variability (76.17%), while maize and groundnut yields were more stable with low sensitivity (0.98 and 1.17%). Yields for crops like pineapple (0.31 kg/ha) were more sensitive to temperature, while maize, beans, groundnut, and vegetable yields were less sensitive to temperature with yields ranging from 0.15 kg/ha, 0.21 kg/ha, 0.18 kg/ha, and 0.12 kg/ha respectively. On the other hand, maize, beans, groundnut, and vegetable yields were more sensitive to rainfall ranging from 0.19kg/ha, 0.15kg/ha, 0.22 kg/ha, and 0.18 kg/ha respectively compared to pineapple yields which decreased with increase rainfall (−0.25 kg/ha). The results further showed that for every degree increase in temperature, maize, pineapple, and beans yields decreased by 0.48, 0.01, and 2.00 units at a 5 % level of significance, while vegetable yield decreased by 0.25 units and an effect was observed. Also, for every unit increase in rainfall, maize, pineapple, groundnut, and vegetable yields decreased by 3815.40, 404.40, 11,398.12, and 2342.32 units respectively at a 5% level, with an observed effect for maize yield. For robustness, these results were confirmed by the generalized additive and the Bayesian linear regression models. This study has been able to quantify the impact of temperature on food crop yields in the African context and employed a novel analytical approach combining the correlation matrix and multivariate linear regression to examine climate-crop yield relationships. The study contributes to the existing body of knowledge on climate-induced risks to food security in Nigeria and provides valuable insights for policymakers, farmers, government, and stakeholders to develop effective strategies to mitigate the impacts of climate change on food crop yields through the integration of climate-smart agricultural practices like agroforestry, conservation agriculture, and drought-tolerant varieties into national agricultural policies and programs and invest in climate information dissemination channels to help consider climate variability in agricultural planning and decision-making, thereby enhancing food security in the country.
The study examines the acceptance and sustainability of vegetarian, vegan, and flexitarian diets, focusing on the health and environmental benefits of reducing animal-derived proteins. Our objective was to investigate the level of acceptance of these dietary trends across different age groups and health statuses and understand how sustainability awareness and health consciousness impact dietary decisions. We used a mixed-method approach to achieve this, conducting eight in-depth interviews and a survey with 329 participants from various demographic backgrounds. Our qualitative analysis revealed that individual and family health consciousness, along with sustainability considerations, play a significant role in dietary choices, particularly among younger generations who are more open to sustainable eating. Quantitative results show that access to information and educational resources strongly influences dietary decisions, further supporting the spread of environmentally conscious eating habits. The practical significance of our research lies in highlighting the importance of educational campaigns and public health policies that can foster broader societal acceptance of sustainable diets. Educational institutions and community organizations can help facilitate the transfer of knowledge necessary for adopting such diets. Our findings emphasize the role of targeted communication strategies in increasing awareness of the benefits of plant-based diets. Furthermore, these insights underline the potential of policy interventions to make sustainable food choices more accessible and appealing to a wider population. Future research could focus on exploring economic incentives and examining long-term health and environmental outcomes associated with these diets.
Climate change is an important factor that must be considered by designers of large infrastructure projects, with its effects anticipated throughout the infrastructure’s useful life. This paper discusses how engineers can address climate change adaptation in design holistically and sustainably. It offers a framework for adaptation in engineering design, focusing on risk evaluation over the entire life cycle. This approach avoids the extremes of inaction and designing for worst-case impacts that may not occur for several decades. The research reviews case studies and best practices from different parts of the world to demonstrate effective design solutions and adjustment measures that contribute to the sustainability and performance of infrastructure. The study highlights the need for interdisciplinary cooperation, sophisticated modeling approaches, and policy interventions for developing robust infrastructure systems.
Copyright © by EnPress Publisher. All rights reserved.