As one of the key initiatives promoted by the Chinese government, precision poverty alleviation aims to lift information-blocked areas out of poverty and ensure their sustainable economic development. Yunnan Province, characterized by its combination of old, young, border, and poor areas, is the province with the most diverse types of poverty, the widest poverty coverage, and the deepest poverty levels in the country. Yunnan has carried out anti-poverty work in tandem with the national efforts for 42 years in a planned and organized manner, ultimately achieving the goal of zero absolute poverty. In this process, digital rural development has played a very important role. Based on the current experience of digital construction in developed regions, completing regional digitalization requires meeting the needs of information resources, information environment, and information supply and demand. Through keyword search, text analysis, and field visits, we summarized the factors considered by local governments in policy formulation. We also attempted to map out the path for rural governments to build digital villages. With the ultimate goal of bridging the urban-rural gap, the study of digital rural development in Yunnan will provide an effective case.
This research presents a novel approach utilizing a self-enhanced chimp optimization algorithm (COA) for feature selection in crowdfunding success prediction models, which offers significant improvements over existing methods. By focusing on reducing feature redundancy and improving prediction accuracy, this study introduces an innovative technique that enhances the efficiency of machine learning models used in crowdfunding. The results from this study could have a meaningful impact on how crowdfunding campaigns are designed and evaluated, offering new strategies for creators and investors to increase the likelihood of campaign success in a rapidly evolving digital funding landscape.
Spiritual Intelligence (SI) has become a key contributor towards enhancing employee well-being and job satisfaction (JS) in the modern competitive business world. This study examines the impact of SI on JS among Sri Lankan IT professionals, considering gender’s role in this relationship. Analyzing data from 383 respondents using Partial Least Square Structural Equation Modeling (PLS-SEM), the study reveals a strong positive correlation between SI and JS, with no moderating effect on gender. The study highlights the importance of embedding SI into HR and organizational policies to enhance workforce resilience and retention while contributing to broader industry development and global competitiveness in the IT sector.
The proposed research work encompasses implications for infrastructure particularly the cybersecurity as an essential in soft infrastructure, and policy making particularly on secure access management of infrastructure governance. In this study, we introduce a novel parameter focusing on the timestamp duration of password entry, enhancing the algorithm titled EPSBalgorithmv01 with seven parameters. The proposed parameter incorporates an analysis of the historical time spent by users entering their passwords, employing ARIMA for processing. To assess the efficacy of the updated algorithm, we developed a simulator and employed a multi-experimental approach. The evaluation utilized a test dataset comprising 617 authentic records from 111 individuals within a selected company spanning from 2017 to 2022. Our findings reveal significant advancements in EPSBalgorithmv01 compared to its predecessor namely EPSBalgorithmv00. While EPSBalgorithmv00 struggled with a recognition rate of 28.00% and a precision of 71.171, EPSBalgorithmv01 exhibited a recognition rate of 17% with a precision of 82.882%. Despite a decrease in recognition rate, EPSBalgorithmv01 demonstrates a notable improvement of approximately 14% over EPSBalgorithmv00.
The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
Copyright © by EnPress Publisher. All rights reserved.