This paper presents an effective method for performing audio steganography, which would help in improving the security of information transmission. Audio steganography is one of the techniques for hiding secret messages within an audio file to maintain communication secrecy from unwanted listeners. Most of these conventional methods have several drawbacks related to distortion, detectability, and inefficiency. To mitigate these issues, a new scheme is presented which combines the techniques of image interpolation with LSB encoding. It selects non-seed pixels to allow reversibility and diminish distortion in medical images. Our technique also embeds a fragile watermarking scheme to identify any breach during transmission to recover data securely and reliably. A magic rectangle has also been used for encryption to enhance data security. This paper proposes a robust, low-distortion audio steganography technique that provides high data integrity with undetectability and will have wide applications in sectors like e-healthcare, corporate data security, and forensic applications. In the future, this approach will be refined for broader audio formats and overall system robustness.
With the rapid development of artificial intelligence (AI) technology, its application in the field of auditing has gained increasing attention. This paper explores the application of AI technology in audit risk assessment and control (ARAC), aiming to improve audit efficiency and effectiveness. First, the paper introduces the basic concepts of AI technology and its application background in the auditing field. Then, it provides a detailed analysis of the specific applications of AI technology in audit risk assessment and control, including data analysis, risk prediction, automated auditing, continuous monitoring, intelligent decision support, and compliance checks. Finally, the paper discusses the challenges and opportunities of AI technology in audit risk assessment and control, as well as future research directions.
Background: Digital transformation in the sports industry has become increasingly crucial for sustainable development, yet comprehensive empirical evidence on policy effectiveness and risk management remains limited. Purpose: This study investigates the impact of policy support and risk factors on digital transformation in sports companies, examining heterogeneous effects across different firm characteristics and regional contexts. Methods: Using panel data from 168 sports companies listed on China’s A-shares markets and the New Third Board from 2019 to 2023, this study employs multiple regression analyses, including baseline models, instrumental variables estimation, and robustness tests. The digital transformation level is measured through a composite index incorporating digital infrastructure, capability, and innovation dimensions. Results: The findings reveal that policy support significantly enhances digital transformation levels (coefficient = 0.238, p < 0.01), while financial risks demonstrate the strongest negative impact (−0.162, p < 0.01). Large firms and state-owned enterprises show stronger responses to policy support (0.312 and 0.278, respectively, p < 0.01). Regional development levels significantly moderate the effectiveness of policy implementation. Conclusions: The study provides empirical evidence for the differential effects of policy support and risk factors on digital transformation across various firm characteristics. The findings suggest the need for differentiated policy approaches considering firm size, ownership structure, and regional development levels. Implications: Policy makers should develop targeted support mechanisms addressing specific challenges faced by different types of firms, while considering regional disparities in digital transformation capabilities.
Oil spills (OS) in waters can have major consequences for the ecosystem and adjacent natural resources. Therefore, recognizing the OS spread pattern is crucial for supporting decision-making in disaster management. On 31 March 2018, an OS occurred in Balikpapan Bay, Indonesia, due to a ship’s anchor rupturing a seafloor crude oil petroleum pipe. The purpose of this study is to investigate the propagation of crude OS using coupled three-dimensional (3D) model from DHI MIKE software and remote sensing data from Sentinel-1 SAR (Synthetic Aperture Radar). MIKE3 FM predicts and simulates the 3D sea circulation, while MIKE OS models the path of oil’s fate concentration. The OS model could identify the temporal and spatial distribution of OS concentration in subsurface layers. To validate the model, in situ observations were made of oil stranded on the shore. On 1 April 2018, at 21:50 UTC, Sentinel-1 SAR detected an OS on the sea surface covering 203.40 km2. The OS model measures 137.52 km2. Both methods resulted in a synergistic OS exposure of 314.23 km2. Wind dominantly influenced the OS propagation on the sea surface, as detected by the SAR image, while tidal currents primarily affected the oil movement within the subsurface simulated by the OS model. Thus, the two approaches underscored the importance of synergizing the DHI MIKE model with remote sensing data to comprehensively understand OS distribution in semi-enclosed waters like Balikpapan Bay detected by SAR.
This study meticulously explores the crucial elements precipitating corporate failures in Taiwan during the decade from 1999 to 2009. It proposes a new methodology, combining ANOVA and tuning the parameters of the classification so that its functional form describes the data best. Our analysis reveals the ten paramount factors, including Return on Capital ROA(C) before interest and depreciation, debt ratio percentage, consistent EPS across the last four seasons, Retained Earnings to Total Assets, Working Capital to Total Assets, dependency on borrowing, ratio of Current Liability to Assets, Net Value Per Share (B), the ratio of Working Capital to Equity, and the Liability-Assets Flag. This dual approach enables a more precise identification of the most instrumental variables in leading Taiwanese firms to bankruptcy based only on financial rather than including corporate governance variable. By employing a classification methodology adept at addressing class imbalance, we substantiate the significant influence these factors had on the incidence of bankruptcy among Taiwanese companies that rely solely on financial parameters. Thus, our methodology streamlines variable selection from 95 to 10 critical factors, improving bankruptcy prediction accuracy and outperforming Liang’s 2016 results.
The implementation of data interoperability in healthcare relies heavily on policy frameworks. However, many hospitals across South Africa are struggling to integrate data interoperability between systems, due to insufficient policy frameworks. There is a notable awareness that existing policies do not provide clear actionable direction for interoperability implementation in hospitals. This study aims to develop a policy framework for integrating data interoperability in public hospitals in Gauteng Province, South Africa. The study employed a conceptual framework grounded in institutional theory, which provided a lens to understand policies for interoperability. This study employed a convergence mixed method research design. Data were collected through an online questionnaire and semi-structured interviews. The study comprised 144 clinical and administrative personnel and 16 managers. Data were analyzed through descriptive and thematic analysis. The results show evidence of coercive isomorphism that public hospitals lack cohesive policies that facilitate data interoperability. Key barriers to establishing policy framework include inadequate funding, ambiguous guidelines, weak governance, and conflicting interests among stakeholders. The study developed a policy to facilitate the integration of data interoperability in hospitals. This study underscores the critical need for the South African government, legislators, practitioners, and policymakers to consult and involve external stakeholders in the policy-making processes.
Copyright © by EnPress Publisher. All rights reserved.