In recent years, enological tourism, also known as wine tourism, has emerged as a globally popular tourism product. The role of wine tourism in Slovakia is similarly significant, given the country’s favourable conditions for the development of wine tourism products. The objective of this study is to analyze the current demand for wine-themed experiences among tourists in the Nitra region. This paper presents a characterization of wine tourism based on an analysis of secondary sources. Following the processing of the initial findings from a demand-oriented questionnaire survey, the authors endeavor to delineate the profile of the wine tourism visitor by examining the demand for wine tourism from the vantage point of domestic consumers. It is the authors’ contention that an understanding of the profile of the wine tourism visitor is beneficial in optimising the provision of wine tourism products and stimulating the development of tourism infrastructure.
The objective of this study is to explore the relationship between changing weather conditions and tourism demand in Thailand across five selected provinces: Chonburi (Pattaya), Surat Thani, Phuket, Chiang Mai, and Bangkok. The annual data used in this study from 2012 to 2022. The estimation method is threshold regression (TR). The results indicate that weather conditions proxied by the Temperature Humidity Index (THI) significantly affect tourism demand in these five provinces. Specifically, changes in weather conditions, such as an increase in temperature, generally result in a decrease in tourism demand. However, the impact of weather conditions varies according to each province’s unique characteristics or highlights. For example, tourism demand in Bangkok is not significantly affected by weather conditions. In contrast, provinces that rely heavily on maritime tourism, such as Chonburi (Pattaya), Phuket, and Surat Thani, are notably affected by weather conditions. When the THI in each province rises beyond a certain threshold, the demand for tourism in these provinces by foreign tourists decreases significantly. Furthermore, economic factors, particularly tourists’ income, significantly impact tourism demand. An increase in the income of foreign tourists is associated with a decrease in tourism in Pattaya. This trend possibly occurs because higher-income tourists tend to upgrade their travel destinations from Pattaya to more upscale locations such as Phuket or Surat Thani. For Thai tourists, an increase in income leads to a decrease in domestic tourism, as higher incomes enable more frequent international travel, thereby reducing tourism in the five provinces. Additionally, the study found that the availability and convenience of accommodation and food services are critical factors influencing tourism demand in all the provinces studied.
The integration of new technologies and digitalisation causing significant changes in the skills demanded, leading to skills shortages and skills gaps in digital context. Undoubtedly, the employees’ digital skills and knowledge need to be aligned with the ongoing technological changes. This study obtains inputs from the employers from professional services sector regarding the demand for digital skills and the existence of gaps in digital skill among the employees. The impact of digital skills and willingness to pay for the micro-credential on the employability was investigate. 308 responses from the employers reside in Klang Valley, Johor and Penang collected via online survey. The five areas of digital skills adopted from Digital Competence 2.0, and the pair-sample t-test in SPSS was used to identify the present of skill gaps. Besides, PLS-SEM was used to test the hypotheses with regard to impacts of digital skills and micro credential on employability. The findings indicate that problem-solving and safety skills were ranked as highly demanded digital skills in the future. The skill gaps were found in all areas of digital skills except information and data literacy. The employers agreed that digital skills did affect their decision in hiring the graduate employees and they are willing to pay for micro-credentials to address the skills gaps. Yet, willingness to pay for micro-credentials did not affect the employability directly and indirectly. This study provides insights into the demand of digital skills and the digital skills gaps. Implications of the study from theoretical and practical perspectives are discussed.
Although various actors have examined the user acceptance of e-government developments, less attention has so far devoted to the relationship between attitudes of certain commuter groups against digital technologies and their intention to engage in productive time-use by mobile devices. This paper aims to fill this gap by establishing an overall framework which focuses on Hungarian commuters’ attitudes toward e-government applications as well as their possible demands of developing them. Relying on a representative questionnaire survey conducted in Hungary in March and April 2020, the data were examined by a machine learning and correlations to identify the factors, attitudes and demands that influence the use of mobile devices during frequent commuting. The paper argues that the regularity of commuting in rural areas, as well as the higher levels of qualification and employment status in cities show a more positive, technophile attitude to new ICT and mobile technologies that strengthen the demands for digital development, with special regard to optimising e-government applications for certain types of commuting groups. One of the main limitations of this study is that results suggest a picture of the commuters in a narrow timeframe. The findings suggest that developing e-government applications is necessary and desirable from both of the supply and demand sides. Based on prior scholarly knowledge, no research has ever analysed these correlations in Hungary where commuters are among the European citizens who spend extensive time with commuting.
Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
Improving the competitiveness of tourism destinations is crucial for driving local economies and achieving income growth. In light of this evidence, numerous government departments strive to assess specific factors that impact the competitiveness of tourism destinations, enabling them to issue appropriate new tourism policies that promote more effective forms of tourism business. Therefore, the primary objective of this paper is to investigate how various elements such as tourism resources, tourism support, tourism management, location conditions, and tourism demand influence regional competitiveness in the Northern Bay region of Guangxi Province in China. To accomplish this goal, an online survey was conducted to collect data from 420 visitors who had experienced North Gulf Tourism; yielding an impressive response rate of 95 percent. The findings reveal that all aforementioned factors—namely: Tourism resources, tourism support, tourism management, location conditions and tourist demand—significantly impact destination competitiveness. Notably though, it was found that among these factors influencing destination competitiveness; it is primarily determined by effective local-level management (β = 0.345). Following closely behind are tourist demand (β = 0.133) as the second most influential factor affecting destination competitiveness; followed by location conditions (β = 0.116) ranking third; then comes tourist support (β = 0.03) as fourth in line impacting destination competitiveness; finally with least impact being exerted by available tourist resources (β = 0.016). Consequently, highlighting that regional competitiveness within Guangxi’s Northern Bay area predominantly hinges on efficient local-level management practices thus strongly recommending relevant authorities formulate novel work policies aimed at enhancing levels of local-level competitive advantage within the realm of regional touristic offerings.
Copyright © by EnPress Publisher. All rights reserved.