Liquid Metal Battery (LMB) technology is a new research area born from a different economic and political climate that has the ability to address the deficiencies of a society where electrical energy storage alternatives are lacking. The United States government has begun to fund scholarly research work at its top industrial and national laboratories. This was to develop Liquid Metal Battery cells for energy storage solutions. This research was encouraged during the Cold War battle for scientific superiority. Intensive research then drifted towards high-energy rechargeable batteries, which work better for automobiles and other applications. Intensive research has been carried out on the development of electrochemical rechargeable all-liquid energy storage batteries. The recent request for green energy transfer and storage for various applications, ranging from small-scale to large-scale power storage, has increased energy storage advancements and explorations. The criteria of high energy density, low cost, and extensive energy storage provision have been met through lithium-ion batteries, sodium-ion batteries, and Liquid Metal Battery development. The objective of this research is to establish that Liquid Metal Battery technology could provide research concepts that give projections of the probable electrode metals that could be harnessed for LMB development. Thus, at the end of this research, it was discovered that the parameter estimation of the Li//Cd-Sb combination is most viable for LMB production when compared with Li//Cd-Bi, Li-Bi, and Li-Cd constituents. This unique constituent of the LMB parameter estimation would yield a better outcome for LMB development.
Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
This study focused on the formulation and characterization of silver nanoparticles (AgNP) functionalized with d-limonene. The nanoparticles were functionalized by phase inversion and the synthesis of the nanoparticles was performed in situ; particle size was determined by laser diffraction, zeta potential and optical colloidal stability using Multiscan 20 for a period of 24 hours at 37 °C; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the formulated material on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Klebsiella oxytoca ATCC 700324, Enterococcus casseliflavus ATCC 700327, Escherichia coli BLEE, carbapenem-resistant Pseudomona aeruginosa were determined. The nanoparticles showed colloidal stability at a d-limonene concentration of 3.93%, silver ions at 1.61 × 10−3%, non-ionic adjuvant at 24% and ascorbic acid at 5.88%; citric acid/citrate (1:1) 0.48M for a pH of 4.5 was used as a buffer system. The formulation was classified as a polydisperse system (PD = 0.0851), with a zeta potential of −11.6 mV and average particle size of 81.5 ± 0.9 nm. A particle migration velocity of −0.199 ± 0.006 mm∙h−1, a constant transmission profile and backscattering profile with variations of 10% were evidenced, which represents a stable formulation. The nanoparticles presented an MIC and an MBC of 28 μg∙mL−1 (5.6 × 10−2% d-limonene and 4.7 × 10−5% AgNP) against all tested bacteria.
Urban trees are one of the valuable storage in metropolitan areas. Nowadays, a particular attention is paid to the trees and spends million dollars per year to their maintenance. Trees are often subjected to abiotic factors, such as fungi, bacteria, and insects, which lead to decline mechanical strength and wood properties. The objective of this study was to determine the potential degradation of Elm tree wood by Phellinus pomaceus fungi, and Biscogniauxia mediteranae endophyte. Biological decay tests were done according to EN 113 standard and impact bending test in accordance with ASTM-D256-04 standard. The results indicated that with longer incubation time, weight loss increased for both sapwood and heartwood. Fungal deterioration leads to changes in the impact bending. In order to manage street trees, knowing tree characteristics is very important and should be regularly monitored and evaluated in order to identify defects in the trees.
Copyright © by EnPress Publisher. All rights reserved.