This paper explores the integration of Large Language Models (LLMs) and Software-Defined Resources (SDR) as innovative tools for enhancing cloud computing education in university curricula. The study emphasizes the importance of practical knowledge in cloud technologies such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), DevOps, and cloud-native environments. It introduces Lean principles to optimize the teaching framework, promoting efficiency and effectiveness in learning. By examining a comprehensive educational reform project, the research demonstrates that incorporating SDR and LLMs can significantly enhance student engagement and learning outcomes, while also providing essential hands-on skills required in today’s dynamic cloud computing landscape. A key innovation of this study is the development and application of the Entropy-Based Diversity Efficiency Analysis (EDEA) framework, a novel method to measure and optimize the diversity and efficiency of educational content. The EDEA analysis yielded surprising results, showing that applying SDR (i.e., using cloud technologies) and LLMs can each improve a course’s Diversity Efficiency Index (DEI) by approximately one-fifth. The integrated approach presented in this paper provides a structured tool for continuous improvement in education and demonstrates the potential for modernizing educational strategies to better align with the evolving needs of the cloud computing industry.
Relational database models offer a pathway for the storage, standardization, and analysis of factors influencing national sports development. While existing research delves into the factors linked with sporting success, there remains an unexplored avenue for the design of databases that seamlessly integrate quantitative analyses of these factors. This study aims to design a relational database to store and analyse quantitative sport development data by employing information technology tools. The database design was carried out in three phases: (i) exploratory study for context analysis, identification, and delimitation of the data scope; (ii) data extraction from primary sources and cataloguing; (iii) database design to allow an integrated analysis of different dimensions and production of quantitative indicators. An entity-relationship diagram and an entity-relationship model were built to organize and store information relating to sports, organizations, people, investments, venues, facilities, materials, events, and sports results, enabling the sharing of data across tables and avoiding redundancies. This strategy demonstrated potential for future knowledge advancement by including the establishment of perpetual data updates through coding and web scraping. This, in turn, empowers the continuous evaluation and vigilance of organizational performance metrics and sports development policies, aligning seamlessly with the journal’s focus on cutting-edge methodologies in the realm of digital technology.
As the complexity and scale of software applications increase, the challenges associated with testing these systems grow correspondingly, necessitating innovative and sustainable testing strategies. This paper explores a multifaceted approach aimed at addressing the intricate challenges inherent in testing large-scale software applications. Through a comprehensive examination of current industry practices and emerging trends, this study introduces a novel framework that integrates advanced testing techniques with state-of-the-art tools. This framework not only mitigates the challenges posed by the complexity and size of modern applications but also enhances the efficiency and effectiveness of the testing process. Key aspects of this research include a detailed exploration of test methodologies suited for large-scale applications, an evaluation of advanced tools designed for complex test scenarios, and an analysis of the impact of the test environment on sustainability. The findings offer valuable insights and actionable strategies for software development and testing professionals aiming to optimize testing processes and improve the quality and sustainability of their software in a rapidly evolving technological landscape.
The integration of medical images is the process of registering and fusing them to obtain a greater amount of diagnostic information. In this work an analysis is performed for the integration of images obtained through computed axial tomography and magnetic resonance imaging, for which a tool was developed in the Matlab program, where the registration is implemented through equivalent features; in addition, the pairs of images are compared by several fusion rules, with a view to identify the best algorithm in which the resulting fused image contains the most information from the original representations.
Copyright © by EnPress Publisher. All rights reserved.