The recent development of characteristic towns has encountered a multitude of challenges and chaos. Nevertheless, there have been many instances of information asymmetry due to the absence of an effective management model and an intuitive digital management system. Consequently, this has caused the erosion of public interests and inadequate supervision by public agencies. As society is progressing at a rapid pace, there is a growing apprehension regarding poor management synergy, outdated management practices, and limited use of technology in traditional construction projects. In today's technologically sophisticated society characterized by the “Internet+” and intelligent management, there is an urgent requirement to identify a more efficient collaborative management model, thereby reducing errors caused by information asymmetry. This paper focuses on the integration of building information modeling (BIM) and integrated project delivery (IPD) for collaborative management within characteristic towns in the PPP mode. By analyzing the available literature on the application status, this study investigates the implementation methods and framework construction of collaborative management while exploring the advantages and disadvantages. On this basis, this study highlights the problems that arise and provides recommendations for improvement. Considering this, the application of the BIM-based IPD model to characteristic towns in PPP mode will enhance the effectiveness of collaborative management among all parties involved, thereby fostering an environment that facilitates decision-making and operational management in the promotion of characteristic industries.
As urbanisation increases, questions arise about the desirability of further urban growth, as it was not accompanied by corresponding economic growth, and social and environmental problems began to grow in the largest cities in the world. The objective of the article is to substantiate the limits of urbanization growth in Kazakhstan based on the study of theoretical views on this process, analysis of the dependence of social and economic parameters of 134 countries on the urbanisation level and calculation of the urbanisation level that contributes most to economic growth and social well-being. To achieve the goal, the following tasks have been set and solved: theoretical views on the process of urbanization have been generalized; a hypothesis has been put forward about the emergence of an “urbanization trap” in which the growth of large cities is not accompanied by economic growth and improvement of social well-being; an analysis of the dependence of socio-economic indicators on the level of urbanization has been carried out on the example of 134 countries of the world; the level of urbanization that maximizes economic growth and social well-being is calculated; the necessity of the development of small towns in Kazakhstan is substantiated. To solve the problems, the methods of logical analysis, analogies and generalizations, economic statistics, index, graphical, Pearson correlation analysis, Spearman and Kendall rank regression based on models in SPSS were used. As a result, the following conclusions are made: the hypothesis of a possible deterioration of socio-economic indicators in large cities is confirmed; the best positive result is demonstrated by the level of urbanization of 50%–59%. The recommendations are justified: in Kazakhstan, it is necessary to adhere to the level of urbanization no higher than 59%; the growth of urbanization should be ensured through the development of small towns; it is necessary to improve the methods of managing the process of urbanization and develop individual city plans.
In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
Copyright © by EnPress Publisher. All rights reserved.