This study aims to examine the pathways through which the user experience (UX) of ChatGPT, a representative of generative artificial intelligence, affects user loyalty. Additionally, it seeks to verify whether ChatGPT’s UX varies according to a user’s need for cognition (NFC). This research proposed and examined how ChatGPT’ UX affect user engagement and loyalty and used mediation analysis using PROCESS Macro Model 6 to test the impact of UX on web-based ChatGPT loyalty. Data were collected by an online marketing research company. 200 respondents were selected from a panel of individuals who had used ChatGPT within the previous month. Prior to the survey, the study objective was explained to the respondents, who were instructed to answer questions based on their experiences with ChatGPT during the previous month. The usefulness of ChatGPT was found to have a significant impact on interactivity, engagement, and intention to reuse. Second, it was revealed that evaluations of ChatGPT may vary according to users’ cognitive needs. Users with a high NFC, who seek to solve complex problems and pursue new experiences, perceived ChatGPT’s usefulness, interactivity, engagement, and reuse intentions more positively than those with a lower NFC. These results have several academic implications. First, this study validated the role of the UX in ChatGPT. Second, it validated the role of users’ need for cognition levels in their experience with ChatGPT.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
Accurate demand forecasting is key for companies to optimize inventory management and satisfy customer demand efficiently. This paper aims to Investigate on the application of generative AI models in demand forecasting. Two models were used: Long Short-Term Memory (LSTM) networks and Variational Autoencoder (VAE), and results were compared to select the optimal model in terms of performance and forecasting accuracy. The difference of actual and predicted demand values also ascertain LSTM’s ability to identify latent features and basic trends in the data. Further, some of the research works were focused on computational efficiency and scalability of the proposed methods for providing the guidelines to the companies for the implementation of the complicated techniques in demand forecasting. Based on these results, LSTM networks have a promising application in enhancing the demand forecasting and consequently helpful for the decision-making process regarding inventory control and other resource allocation.
Copyright © by EnPress Publisher. All rights reserved.