Six Sigma is an organized and systematic method for strategic process improvement that relies on statistical and scientific methods to reduce the defect rates and achieve significant quality up-gradation. Six Sigma is also a business philosophy to improve customer satisfaction, a tool for eliminating process variation and errors and a metric of world class companies allowing for process comparisons. Six Sigma is one of the most effective advanced improvement strategies which has direct impact on operational excellence of an organization. Six Sigma may also be defined as the powerful business strategies, which have helped to improve quality initiatives in many industries around the world. With the use of Six Sigma in casting industries, rejection rate is reduced, customer satisfaction is improved and financial benefits also increased. Six Sigma management uses statistical process control to relentlessly and rigorously pursue the reduction of variation in all critical processes to achieve continuous and breakthrough improvements that impact the bottom-line and/or top-line of the organization and increase customer satisfaction. In this paper author reviewed some of the significant previous published papers and focused on the general overview of publication in casting industries.
Helical deep hole drilling is a process frequently used in industrial applications to produce bores with a large length to diameter ratio. For better cooling and lubrication, the deep drilling oil is fed directly into the bore hole via two internal cooling channels. Due to the inaccessibility of the cutting area, experimental investigations that provide information on the actual machining and cooling behavior are difficult to carry out. In this paper, the distribution of the deep drilling oil is investigated both experimentally and simulatively and the results are evaluated. For the Computational Fluid Dynamics (CFD) simulation, two different turbulence models, i.e. the RANS k-ω-SST and hybrid SAS-SST model, are used and compared. Thereby, the actual used deep drilling oil is modelled instead of using fluid dynamic parameters of water, as is often the case. With the hybrid SAS-SST model, the flow could be analyzed much better than with the RANS k-ω-SST model and thus the processes that take place during helical deep drilling could be simulated with realistic details. Both the experimental and the simulative results show that the deep drilling oil movement is almost exclusively generated by the tool rotation. At the tool’s cutting edges and in the flute, the flow velocity drops to zero for the most part, so that no efficient cooling and lubrication could take place there. In addition, cavitation bubbles form and implode, concluding in the assumption that the process heat is not adequately dissipated and the removal of chips is adversely affected, which in turn can affect the service life of the tool and the bore quality. The carried out investigations show that the application of CFD simulation is an important research instrument in machining technology and that there is still great potential in the area of tool and process optimization.
The use of geotechnologies combined with remote sensing has become increasingly essential and important for efficiently and economically understanding land use and land cover in specific regions. The objective of this study was to observe changes in agricultural activities, particularly agriculture/livestock farming, in the North Forest Zone of Pernambuco (Mata Norte), a political-administrative region where sugarcane cultivation has historically been the backbone of the local economy. The region’s sugarcane biomass also contributes to land use and land cover observations through remote sensing techniques applied to digital satellite images, such as those from Landsat-8, which was used in this study. This study was conducted through digital image processing, allowing the calculation of the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the Leaf Area Index (LAI) to assess vegetation cover dynamics. The results revealed that sugarcane cultivation is the predominant agricultural and vegetation activity in Mata Norte. Livestock farming areas experienced a significant reduction over the observed decade, which, in turn, led to an increase in agricultural and forested areas. The most dynamic spatiotemporal behavior was observed in the expansion and reduction of livestock areas, a more significant change compared to sugarcane areas. Therefore, land use and land cover in this region are more closely tied to sugarcane cultivation than any other agricultural activity.
Recent times have seen significant advancements in AI and NLP technologies, poised to revolutionize logistical decision-making across industries. This study investigates integrating ChatGPT, an advanced AI language model, into strategic, tactical, and operational logistics. Examining its applicability, benefits, and limitations, the study delves into ChatGPT’s capacity for strategic logistics planning, facilitating nuanced decision-making through natural language interactions. At the tactical level, it explores ChatGPT’s role in optimizing route planning and enhancing real-time decision support. The operational aspect scrutinizes ChatGPT’s capabilities in micro-level logistics and emergency response. Ethical implications, encompassing data security and human-AI trust dynamics, are also analyzed. This report furnishes valuable insights for the logistics sector, emphasizing AI’s potential in reshaping decision-making while underscoring the necessity for foresight, evaluation, and ethical considerations in AI integration. In this publication, it is assumed that ChatGPT is not entirely reliable for decision-making in the logistics field: at the strategic level, it can be effectively used for “brainstorming” in preparing decisions, but at the tactical and operational level, the depth of the knowledge is not sufficient to make appropriate decisions. Therefore, the answers provided by ChatGPT to the defined logistic tasks are compared with real logistic solutions. The article highlights ChatGPT’s effectiveness at different levels of logistics and clarifies its potential and limitations in the logistics field.
Copyright © by EnPress Publisher. All rights reserved.