In this work, the structural transformations of a suboxide vacuum-deposited film of SiO1.3 composition annealed in an inert atmosphere in a wide temperature range of 100 °C–1100 °C were characterized by the reflection-transmission spectroscopy technique. The experimental spectroscopic data were used to obtain the spectra of the absorption coefficient α(hν) in the absorption edge region of the film. Based on their processing, the dependences of Urbach energy EU and optical (Tauc) bandgap Eo on the annealing temperature were obtained. An assessment of the electronic band gap (mobility gap) Eg was also carried out. Analysis of these dependences allowed us to trace dynamics of thermally stimulated disproportionation of the suboxide film and the features of the formation of nanocomposites consisting of amorphous and/or crystalline silicon nanoparticles in an oxide matrix.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
The properties of the beta batteries are compared, which are made on the basis of the different β-isotopes with beta decay. Tritium and Ni-63 make it possible to make β-sources of high activity, without harmful associated emissions, with low self-absorption, emitting high-energy β-electrons that penetrate deep into the semiconductor and generate a large number of electron-hole pairs. The efficiency of beta batteries needs to be analyzed based on the real energy distribution of β-electrons. It makes possible to obtain the real value of the energy absorbed inside the β-source, correctly estimate the amount of self-absorption of the β-electrons and part of the β-electronsthere is a penetrate into the semiconductor, the number of electrons and holes that are generated in the semiconductor, and the magnitude of the idling voltage. Formulas for these quantities are calculated in this paper.
Metamaterial perfect absorber is very important in the study of refractive index sensor. The time domain finite difference method is used to simulate the surface plasmon structure. The double nanorod periodic structure is designed, and the parameters of the top layer structure are optimized according to the impedance matching principle, and the absorption rate of the structure to the light wave reaches 99.6% when the wavelength is about 12 mm. The absorption spectroscopy of the structure is studied with the change of the refractive index of the spatial medium around the structure, and the sensitivity of the double nanorod structure is 4,008 nm/RIU, which can be used to measure the refractive index of the gas.
In view of the large energy consumption of the regeneration process in the chemical absorption decarburization process, on the basis of the enrichment classification flow process, the nanoscale ceramic film is used as a new heat exchanger between the enriched liquid and the regeneration gas. The porous ceramic film is capable of coupling thermal-mass transfer to effectively recover part of the water vapor and the heat carried in the regeneration gas, so as to reduce the regenerative energy consumption of the system. The effects of parameters such as regeneration temperature, flow rate, molar fraction of water vapor, and MEA enrichment temperature, flow rate, and MEA concentration of shunt on the hydrothermal recovery effect of ceramic membranes of different pore sizes and lengths were studied by using the heat recovery flux and water recovery rate as the indicators. The results show that the hydrothermal recovery performance of the ceramic membrane increases with the increase of MEA enrichment flow, but decreases significantly with the increase of the enrichment temperature. At the same time, with the increase of regenerative gas velocity and the molar fraction of water vapor in the regenerative gas, the heat recovery flux will increase. The heat recovery performance of the 10 nm ceramic membrane is better than that of the 20 nm ceramic membrane.
Modified chitosan hybrids were obtained via chemical reaction of chitosan with two pyrazole aldehyde derivatives to produce two chitosan Schiff bases, Cs-SB1, and Cs-SB2, respectively. FTIR spectroscopy and scanning electron microscopy confirmed both chemical structures and morphology of these Schiff bases. Thermal gravimetric analysis showed an improvement of thermal properties of these Schiff bases. Both chitosan Schiff bases were evaluated in a batch adsorption approach for their ability to remove Cu(II) ions from aqueous solutions. Energy dispersive X-ray for the Schiff bases adsorbed metal ions in various aqueous solutions was performed to confirm the existence of adsorbed metal ions on the surface substrate and their adsorptive efficiency for Cu(II) ions. Results of the batch adsorption method showed that prepared Schiff bases have good ability to remove Cu(II) ions from aqueous solutions. The Langmuir isotherm equation showed a better fit for both adsorbents with regression coefficients (R2 = 0.97 and 0.99, respectively) with maximum adsorption capacity for Cu(II) of 10.33 and 39.84 mg/g for Cs-SB1 and Cs-SB2, respectively. All prepared compounds, pyrazoles and two chitosan Schiff bases, showed good antimicrobial activity against three Gram +ve bacteria, three Gram –ve bacteria and Candida albicans, with varying degrees when compared to the standard antimicrobial agents.
Copyright © by EnPress Publisher. All rights reserved.