Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Onion (Allium cepa L.) is one of the important vegetables in Egypt. The study was conducted in the vegetable field to study the effect of different rates of phosphorus fertilizers and foliar application of Nano-Boron, Chitosan, and Naphthalene Acidic Acid (NAA) on growth and seed productivity of Onion plant (Allium cepa L., cv. Giza 6 Mohassan). The experiments were carried out in a split-plot design with three replicates. The main plot contains 3 rates of phosphorus treatments (30, 45 and 60 kg P2O5/feddan), Subplot includes foliar application of Nano-Boron, Nano-Chitosan and Naphthalene Acidic Acid (NAA) at a concentration of 50 ppm for each and sprayed at three times (50, 65 and 80 days after transplanting). Increasing the phosphorus fertilizers rate to 60 kg P2O5/fed significantly affects the growth and seed production of the Onion plant. Foliar application of nano-boron at 50 ppm concentration gave maximum values of onion seed yield in both seasons. Results stated that the correlation between yield and yield contributing characters over two years was highly significant. It could be recommended that P application at a rate of 60 kg P2O5 and sprayed onion plants at 50 ppm nano-boron three times (at 50, 65, and 80 days from transplanting) gave the highest seed yield of onion plants. Moreover, the maximum increments of inflorescence diameter (94.4%) were recorded to nano-boron foliar spray (60 p × nB) compared to the other treatments in both seasons.
Copyright © by EnPress Publisher. All rights reserved.