Plastic products are items that we use every day around us, and their replacement speed are very fast, so that to recycle waste plastic has become the focus of environmental problems. This study has proposed an optimized circular design for the recycle plant of waste plastic, therefore, and our proposed strategy is to build a new tertiary recycling plant to reduce the total generation amount of the derived solid plastic waste from ordinary and secondary recycling plants and the semi-finished products from secondary recycling plant. Results obtained from a real recycle plant has showed that to recycle the tertiary waste plastic in a tertiary recycling plant, the finished products produced from a secondary recycling plant accounts about 27% of ordinary waste plastic, and the semi-finished products that mainly is scrap hardware accounts about 1% of ordinary waste plastic. Other derived solid plastic waste accounts for 6% of ordinary plastic waste. Therefore, if the ordinary, secondary and tertiary recycle plant can be set all-in-one, it can reduce the total generation amount of derived solid plastic waste from 34% to 6%, without and with a tertiary recycling plant, respectively. It can also increase the operating income of the secondary recycle plant and the investment willingness of the new tertiary recycle plant.
The cultivation of vegetables serves as a vital pillar in horticulture, offering an alternative avenue towards achieving economic sustainability. Unfortunately, farmers often lack adequate knowledge on optimizing resource utilization, which subsequently results in low productivity. Furthermore, there has been insufficient research conducted on the comparative profitability and efficient use of resources for pea cultivation. So, the present study was conducted to examine the profitability and resource use efficiency of conventional and organic pea production in Northwestern Himalayan state. Using the technique of purposive sampling, the districts and villages were selected based on the highest area. By using simple random sampling, a sample of 100 farmers was selected, out of which 50 were organic growers and 50 were inorganic growers, who were further categorized as marginal and small. The cost incurred was higher for the cultivation of inorganic vegetable crops, whereas returns and output-input ratio was higher in organic cultivation. The cultivation of peas revealed that the majority of inputs were being underutilized, and there was a need for proper reallocation of the resources, which would result in enhanced production. Further, major problems in the cultivation of vegetable crops were a high wage rate, a lack of organic certification, a shortage of skilled labour and a lack of technical knowledge.
An alternative for sustainable management in the cultivation of Capsicum annuum L. has focused on the use of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). This research selected PGPRPGPR and AMF based on their effect on Bell Pepper and Jalapeño bell pepper plants. Five bacterial strains isolated from different localities in the state of Mexico (P61 [Pseudomonas tolaasii], A46 [P. tolaasii], R44 [Bacillus pumilus], BSP1.1 [Paenibacillus sp.] and OLs-Sf5 [Pseudomonas sp.]) and 3 AMF treatments (H1 [consortium isolated from Chile rhizosphere in the state of Puebla], H2 [Rhizophagus intraradices] and H3 [consortium isolated from lemon rhizosphere from the state of Tabasco]). In addition, a fertilized treatment (Steiner solution 25%) and an absolute control were included. Jalapeño bell pepper “Caloro” and Bell Pepper “California Wonder” seedlings were inoculated with AMF at sowing and with CPB 15 days after emergence, and grown under controlled environment chamber conditions. In Jalapeño bell pepper, the best bacterial strain was P61 and the best AMF treatment was H1; in Bell Pepper the best strain was R44 and the best AMF were H3 and H1. These microorganisms increased the growth of jalapeño bell pepper and Bell Pepper seedlings compared to the unfertilized control. Likewise, P61 and R44 positively benefited the photosynthetic capacity of PSII.
Forest ecological benefit compensation plays a promoting role in improving the enthusiasm of forest ecological builders and maintainers, maintaining the legitimate economic interests of forest owners, and coordinating the fairness between the “clear water and green mountains” protectors and the “gold and silver mountains” beneficiaries. Comprehensive combed the domestic forest ecological benefit compensation mechanism, including the compensation scope, compensation subject, compensation object, the research progress of compensation standard, summarized the forest ecosystem benefits measurement, including physical appraisal method, the value evaluation method, energy analysis method and the characteristics and application research progress of ecological model method. This paper discusses the research status and existing problems of the calculation basis of compensation standard, the origin, research emphasis and progress of forest ecological service payment abroad in recent years, and the mechanism of forest ecological service payment in many countries. Finally, some suggestions are put forward to improve the compensation mechanism of forest ecological benefits in China. On the one hand, it is necessary to broaden the source of funds through various ways of marketization and scientifically evaluate the forest ecological benefits. On the other hand, the compensation standard should be established scientifically and reasonably to achieve different compensation levels or compensation intervals.
Copyright © by EnPress Publisher. All rights reserved.