Knowledge of the state of fragmentation and transformation of a forested landscape is crucial for proper planning and biodiversity conservation. Chile is one of the world’s biodiversity hotspots; within it is the Nahuelbuta mountain range, which is considered an area of high biodiversity value and intense anthropic pressure. Despite this, there is no precise information on the degree of transformation of its landscape and its conservation status. The objective of this work was to evaluate the state of the landscape and the spatio-temporal changes of the native forests in this mountain range. Using Landsat images from 1986 and 2011, thematic maps of land use were generated. A 33% loss of native forest in 25 years was observed, mainly associated to the substitution by forest plantations. Changes in the spatial patterns of land cover and land use reveal a profound transformation of the landscape and advanced fragmentation of forests. We discuss how these patterns of change threaten the persistence of several endemic species at high risk of extinction. If these anthropogenic processes continue, these species could face an increased risk of extinction.
Landscape architects, who guide planning and design decisions by understanding the socio-cultural expectations, functional needs, and social behaviors of the community, create ideal spaces for people by integrating natural, social, cultural, and aesthetic factors with a holistic design approach in urban public areas. Public open green spaces are important urban areas that have a positive impact on people’s physical, mental, and emotional health. In this context, the concept of personal space, its impact on individuals, and related perception studies have been examined. In landscape design, criteria that affect individuals’ personal space distances and personal space perceptions have been identified, providing a basis for sustainable landscape design projects in public open and green spaces.
The COVID-19 epidemic caused unexpected complications, complexities and challenges in higher educational institutions (HEIs). In order to promote and strengthen the role of women leadership, this study aimed to clarify the unique challenges faced by female leaders at Saudi HEIs during the epidemic, find possible solutions to these challenges, and provide policy as well as management implications. A systematic literature review (SLR) was conducted, examining 27 records (i.e., research papers, articles and conference studies). The data were qualitatively analysed and categorized based on themes like challenges faced, opportunities recognized, and solutions proposed. Findings highlighted women leaders in Saudi HEIs grappled with multiple challenges, including technological barriers, cultural constraints, and increased workloads. Merging challenges with solvable strategies offers a forward-looking perspective, advocating for systemic changes that can shape a resilient and inclusive future for HEIs in Saudi Arabia.
The article discusses the essence of integrative geography and its importance for the theory and practice of geographical science. Such areas of integrative geography are characterized, the development of which will further increase the importance of applied geographical science. They include teaching about cultural landscape and historical landscape (part of landscape studies), geoecological expertise and environmental impact assessment (part of geographic ecology), geographic archeology and ecological culture (part of historical geography), landscape management and landscape services (part of landscape planning), and tourism—Assessment and planning of recreational resources (part of recreational geography).
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
Copyright © by EnPress Publisher. All rights reserved.