Phytomediation is an environmentally friendly green rehabilitation technology that is often incorporated with an application to improve calcium peroxide and phytohormones required for the growth of agricultural plants with the expectation to improve the effectiveness of plant rehabilitation. This study mainly consists of two parts: (1) water culture experiment and (2) pot culture experiment. In the water culture experiment, we attempt to understand the influence of the addition of calcium peroxide, phytohormones (IAA and GA3) and a chelating agent on the growth of sunflower plants. However, in the pot culture experiment, when hormones and the chelating agent EDTA are introduced to different plant groups at the same time, if the nutrition in the water required by plants is not available, the addition of the hormone cannot negate the toxicity caused by EDTA. In terms of calcium peroxide, due to quick release of oxygen in water, this study fails to apply calcium peroxide to the water culture experiment.
When the pot culture experiment is used to examine the influence of hormones at different concentration levels on the growth of sunflowers, GA3 10-8 M is reported to have the optimal effectiveness, followed by IAA 10-8 M; IAA 10-12 M has the lowest effectiveness. According to an accumulation analysis of heavy metals at different levels, GA3 concentrates in leaves to transport nutrition in soil to leaves. This results in an excellent TF value of 2.329G of GA3 than 1.845 of the control group indicating that the addition of the hormone and chelating agent to GA3 increases the TF value and the chelating agent is beneficial to the sunflower plant. If we examine phytoattenuation ability, the one-month experiment was divided into three stages for ten days each. The concentration level of heavy metals in the soil at each stage dropped continuously while that of the control group decreased from 31.63 mg/kg to 23.96 mg/kg, GA3 from 32.09 mg/kg to 23.04 mg/kg and EDTA from 30.65 mg/kg to 25.93 mg/kg indicating the quickest growth period of the sunflowers from the formation of the bud to blossom. During the stage, the quick upward transportation of nutrition results in quick accumulation of heavy metals; the accumulated speed of heavy metals is found higher than that of directly planted plants. This study shows an improvement in the effectiveness of the addition of hormones on plant extraction and when rehabilitation is incorporated with sunflowers with the beginning bud formation, better treatment effectiveness can be reached.
Photocatalysis, an innovative technology, holds promise for addressing industrial pollution issues across aqueous solutions, surfaces, and gaseous effluents. The efficiency of photodegradation is notably influenced by light intensity and duration, underscoring the importance of optimizing these parameters. Furthermore, temperature and pH have a significant impact on pollutant speciation, surface chemistry, and reaction kinetics; therefore, process optimization must consider these factors. Photocatalytic degradation is an effective method for treating water in environmental remediation, providing a flexible and eco-friendly way to eliminate organic contaminants from wastewater. Selectivity in photocatalytic degradation is achieved by a multidisciplinary approach that includes reaction optimization, catalyst design, and profound awareness of chemical processes. To create efficient and environmentally responsible methods for pollution removal and environmental remediation, researchers are working to improve these components.
Social media influencer marketing has emerged as an essential marketing strategy in the online interactive environment. This study investigates the impact of influencer-consumer fit (ICF) on behavioral intentions; intention to co-create brand value (ICC) and purchase intention (PI), with the serial mediation of influencer authenticity (IA) and attitude toward brand (ATB). A self-administered questionnaire was distributed to followers of social media influencers in Pakistan. The data were collected from 421 female followers of social media influencers through survey and partial least squares—structural equation modeling was used for data analysis. The findings reveal that ICF impacts IA, while the latter impacts ATB. ATB in turn impacts behavioral intentions. The direct effects suggest that ICF impacts consumers’ PI but not the ICC. However, with the serial mediation of IA and ATB, the relationship becomes significant. The findings of this study may assist managers in building brand strategies to achieve excellence in a highly dynamic and competitive market by leveraging the power of influencer marketing.
The augmentation of firm performance via customer concentration is particularly indispensable for organizational evolution. Both trade credit financing and financing constraints play pivotal roles in the nexus between customer concentration and performance. This research constructs a moderated mediation model to rigorously investigate the impact of customer concentration on firm performance, positing trade credit financing as the mediating variable and financing constraints as the moderating variable. The relevant hypotheses are evaluated empirically using panel data compiled from listed manufacturing firms in China over the period 2013–2020, yielding 8 firm-year observations. The empirical outcomes denote that customer concentration exerts a positive influence on firm performance, albeit having a negative impact on trade credit financing. Trade credit financing serves as a partial mediator in the relationship between customer concentration and manufacturing firm performance. Financing constraints are found to positively moderate the mediating role of trade credit financing in the relationship between customer concentration and firm performance. This research broadens the understanding of the implications of customer relationships on trade credit financing and performance, thereby enriching the knowledge base for managing a firm’s financing channels more effectively.
Heavy metal contaminated soil due to industrial, agricultural and municipal activities is becoming a global concern. Heavy metals severely affect plants, animals and human health. A suitable technology is necessary for heavy metals removal because it cannot self-decomposition as organic compounds. Among the various technologies surveyed, phytoremediation is one of the safest, most innovative, environmental friendly and cost-effective approach for heavy metals removal. Nevertheless, traditional phytoremediation practices pose some limitations such as long processing time, unstable treatment efficiency and limited application at large scale. In many methods proposed to improve phytoremediation, integrated phytoremediation has been studied in the recent years. Integrated phytoremediation use chelating agents and phytohormones to enhance phytoremediation. This is an environmentally safe, saving time and relative high effective method. Results showed that the association of a metal ion and a chelating agent to form chelates helps to maintain the availability of metals in the soil for the uptake of plants. Phytohormones supply nutrients for the soil to support vegetable growth. Therefore, integrated phytoremediation is a promising solution to overcome the disadvantages of conventional phytoremediation. It should be taken commercialization and need more applied projects in this field to demonstrate and clarify the real potential of this technology. In view of above, this manuscript reviews the mechanism and the efficiency of integrated phytoremediation for heavy metals in contaminated soil to give an overview of this technology.
After the pandemic (COVID-19), there is a dire need to gain a competitive advantage for tourism organizations which can be accomplished by implementing new technologies to facilitate sustainable healthier services. Given that, the study aims to shed light on the importance of digital leadership to improve sustainable business performance considering the parallel mediation of digital technology and digital technology support in the tourism sector of Pakistan. The sample population consists of technology-based tourism organizations in Pakistan. Cochran’s formula was chosen for sampling, in which 37 organizations with 792 employees were selected for data through a random sampling technique. The collected data were analyzed through structural equation modeling, and findings reveal that digital leadership positively influences sustainable business performance. Furthermore, the mediating role of technological leadership support and digital technologies partially mediates the association between digital leadership and sustainable performance.
Copyright © by EnPress Publisher. All rights reserved.