Facing the digital economy era, considerable attention is paid to the importance of understanding the fundamental impact on the information and development of blended teaching methods regarding the higher education. For this reason, the purpose of this study is to answer the challenges brought by the digital economy era, identify the effective teaching methods which would be used in English Correspondence course in the era of digital economy, aiming to form the patterns of learning, provide high motivation, strength and knowledge, and most importantly contribute to the complex competences of future working. For further research, it is expected to be able to prove that using the blended teaching methods will effectively improve students’ communication skills and learning efficiency, enhance students’ learning experience and critical thinking skills.
Forests have ecological functions in water conservation, climate regulation, environmental purification, soil and water conservation, biodiversity protection and so on. Carrying out forest ecological quality assessment is of great significance to understand the global carbon cycle, energy cycle and climate change. Based on the introduction of the concept and research methods of forest ecological quality, this paper analyzes and summarizes the evaluation of forest ecological quality from three comprehensive indicators: forest biomass, forest productivity and forest structure. This paper focuses on the construction of evaluation index system, the acquisition of evaluation data and the estimation of key ecological parameters, discusses the main problems existing in the current forest ecological quality evaluation, and looks forward to its development prospects, including the unified standardization of evaluation indexes, high-quality data, the impact of forest living environment, the acquisition of forest level from multi-source remote sensing data, the application of vertical structural parameters and the interaction between forest ecological quality and ecological function.
This review provided a detailed overview of the different synthesis and characterization methods of polymeric nanoparticles. Nanoparticles are defined as solid and colloidal particles of macromolecular substances ranging in size under 100 nm. Different types of nanoparticles are used in many biological fields (bio-sensing, biological separation, molecular imaging, anticancer therapy, etc.). The new features and functions provided by nano dimensions are largely different from their bulk forms. High volume/surface ratio, improved resolution and multifunctional capability make these materials gain many new features.
This review comprehensively summarizes various preparatory methods of polymeric bone scaffolds using conventional and modern advanced methods. Compilations of the various fabrication techniques, specific composition, and the corresponding properties obtained under clearly identified conditions are presented in the commercial formulations of bone scaffolds in current orthopedic use. The gaps and unresolved questions in the existing database, efforts that should be made to address these issues, and research directions are also covered. Polymers are unique synthetic materials primarily used for bone and scaffold applications. Bone scaffolds based on acrylic polymers have been widely used in orthopedic surgery for years. Polymethyl methacrylate (PMMA) is especially known for its widespread applications in bone repair and dental fields. In addition, the PMMA polymers are suitable for carrying antibiotics and for their sustainable release at the site of infection.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Copyright © by EnPress Publisher. All rights reserved.