This review provided a detailed overview of the different synthesis and characterization methods of polymeric nanoparticles. Nanoparticles are defined as solid and colloidal particles of macromolecular substances ranging in size under 100 nm. Different types of nanoparticles are used in many biological fields (bio-sensing, biological separation, molecular imaging, anticancer therapy, etc.). The new features and functions provided by nano dimensions are largely different from their bulk forms. High volume/surface ratio, improved resolution and multifunctional capability make these materials gain many new features.
This review comprehensively summarizes various preparatory methods of polymeric bone scaffolds using conventional and modern advanced methods. Compilations of the various fabrication techniques, specific composition, and the corresponding properties obtained under clearly identified conditions are presented in the commercial formulations of bone scaffolds in current orthopedic use. The gaps and unresolved questions in the existing database, efforts that should be made to address these issues, and research directions are also covered. Polymers are unique synthetic materials primarily used for bone and scaffold applications. Bone scaffolds based on acrylic polymers have been widely used in orthopedic surgery for years. Polymethyl methacrylate (PMMA) is especially known for its widespread applications in bone repair and dental fields. In addition, the PMMA polymers are suitable for carrying antibiotics and for their sustainable release at the site of infection.
This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Through the combination of the geographic information systems (GIS) and the integrated information model, the stability of regional bank slope was comprehensively evaluated. First, a regional bank slope stability evaluation index system was established through studying seven selected factors (slope grade, slope direction, mountain shadow, elevation, stratigraphic lithology, geological structure and river action) that have an impact on the stability of the slope. Then, each factor was rasterized by GIS. According to the integrated information model, the evaluation index distribution map based on rasterized factors was obtained to evaluate the stability of the regional bank slope. Through the analysis of an actual project, it was concluded that the geological structure and stratigraphic lithology have a significant impact on the evaluation results. Most of the research areas were in the relatively low stable areas. The low and the relatively low stable areas accounted for 15.2% and 51.5% of the total study area respectively. The accuracy of slope evaluation results in the study area reached 95.41%.
This research introduces a novel framework integrating stochastic finite element analysis (FEA) with advanced circular statistical methods to optimize heat pump efficiency under material uncertainties. The proposed methodologies and optimization focus on balancing the mean efficiency and variability by adjusting the concentration parameter of the Von Mises distribution, which models directional variability in thermal conductivity. The study highlights the superiority of the Von Mises distribution in achieving more consistent and efficient thermal performance compared to the uniform distribution. We also conducted a sensitivity analysis of the parameters for further insights. The results show that optimal tuning of the concentration parameter can significantly reduce efficiency variability while maintaining a mean efficiency above the desired threshold. This demonstrates the importance of considering both stochastic effects and directional consistency in thermal systems, providing robust and reliable design strategies.
Copyright © by EnPress Publisher. All rights reserved.