Lianghuai Mining Area is one of the 13 large coal bases in China. It is an important coal and coal production base in China. Mine water inrush accidents occur frequently, resulting in economic and human resource losses, reflecting the importance of the study of hydrogeology in mining areas. In this paper, the hydrogeological conditions of Bozhou and Huainan Panxie mine are analyzed, and the similarities and differences between the hydrogeological conditions of the two mines are summarized. The shallow pore water group in the Bozhou area is composed of the Quaternary system of the Quaternary system (Q4d) and the upper part of the upper part of the Mao Tong group (Q3m). The lithology of the aquifer is silt, silt and fine sand. The shallow pore water group of the Panxian Pancho Formation in Huainan is composed of the Upper Pleistocene of the Quaternary system and the Holocene strata. The lithology is mainly composed of fine sand. The main sources of shallow pore water supply in the two areas are precipitation infiltration, mainly for evaporation, lateral runoff, artificial mining and deep flow and discharge to the river.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
This study presents a comprehensive two-dimensional numerical analysis of natural laminar convection within a square cavity containing two circular heat sources, which simulate electric cables generating heat due to Joule heating. This scenario is particularly relevant in aeronautics, where excessive heating of electrical installations can lead to significant material and human safety risks. The primary objective of this research is to identify the optimal spacing between the two heat sources to mitigate the risk of overheating and ensure the safe operation of the electrical installation. To achieve this, various configurations were analyzed by adjusting the distance between the heat sources while also varying the Rayleigh number across a range from 103 to 106. The governing equations for the fluid flow and heat transfer were solved using a FORTRAN-based numerical code employing the finite volume method. The results indicate that the heat transfer characteristics within the cavity are significantly influenced by both the distance between the heat sources and the Rayleigh number. The analysis revealed that the average Nusselt number (Nuavg) peaked at a value of 14.69 when the distance between the heat sources was set at 0.7 units and the Rayleigh number was at 106. This finding suggests that maintaining this specific spacing between the electrical cables can optimize heat dissipation and enhance the safety of the installation. In conclusion, the study recommends adopting a spacing of 0.7 units between the electrical cables to ensure optimal thermal performance and minimize the risk of overheating, thereby safeguarding both the materials and personnel involved in aeronautical operations.
China’s Belt and Road Initiative (BRI) hopes to deliver trillions of dollars in infrastructure financing to Asia, Europe, and Africa. If the initiative follows Chinese practices to date for infrastructure financing, which often entail lending to sovereign borrowers, then BRI raises the risk of debt distress in some borrower countries. This paper assesses the likelihood of debt problems in the 68 countries identified as potential BRI borrowers. We conclude that eight countries are at particular risk of debt distress based on an identified pipeline of project lending associated with BRI.
Because this indebtedness also suggests a higher concentration in debt owed to official and quasi-official Chinese creditors, we examine Chinese policies and practices related to sustainable financing and the management of debt problems in borrower countries. Based on this evidence, we offer recommendations to improve Chinese policy in these areas. The recommendations are offered to Chinese policymakers directly, as well as to BRI’s bilateral and multilateral partners, including the IMF and World Bank.
At present, states and entire regions that possess significant reserves of sought-after minerals have great potential to maintain and even improve their socio-economic position in the foreseeable future. Since the beginning of 2000, the increase in mining volumes of minerals has been more than 50%; however, more than half of all extracted raw materials fall to only five leading countries: China, the USA, the Russian Federation, Australia, and India. This article presents the results of the analysis of the global structure of mineral production by type and geographic region. The article provides an in-depth analysis of the world’s leading mining companies, identifying the key players in the industry. A comprehensive overview of each company’s performance, including key financial indicators and production statistics, is presented. The main environmental risks as a result of the continued increase in the global scale of mining have been identified. The prospects for the development of the mining sector are shown. The results of the study can be used by the scientific community as an information source.
The study looks at Ghana’s mining industry’s audit culture and green mining practices about their social responsibility to the communities where their mines are located. Results: According to this study, the economic motivations of mines and green mining are inversely related. Even large mining companies incur significant costs associated with their green mining initiatives because they require a different budget each year, which has an impact on their ability to maximize wealth. Conversely, mines with strong green mining initiatives enjoy positive public perception, and vice versa. Ghanaian mines do not have pre- or during-mining strategies; instead, they only have post-social and post-environmental methods. The best method for evaluating mines’ environmental performance in the community in which they operate is, according to this study, social auditing. This is primarily influenced by the mine’s audit culture, but it is also influenced by the auditor’s compliance with audit processes, audit guidelines, and, ultimately, the audit firm’s experience. The analysis confirms that Ghana’s mine environmental performance is appallingly low since local audit firms are not used in favor of foreign auditors who lack experience or empathy for the problems encountered by these mining communities. Last but not least, corporate social responsibility (CSR) is connected to Ghana’s development of green mining, either directly or indirectly. Whether the mine adopts a technocrat, absolutist, or relativist perspective on mining will determine this. The study discovered that, in contrast to the later approach, the first two views generate work in a mechanistic manner with little to no consideration for CSR.
Copyright © by EnPress Publisher. All rights reserved.