The cultivation of red chili in East Java, Indonesia, has significant economic and social impacts, necessitating proactive supply chain measures. This research aimed to identify priority risk agents, develop effective risk mitigation, and enhance supply chain resilience using the SCOR model, House of Risk, Interpretative Structural Modelling (ISM), and synthesis analysis. Examining 238 respondents—including farmers, collectors, wholesalers, retailers, home-agroindustries, and experts—the findings highlight farmers’ critical role in supply chain resilience despite risks from crop failures, weather fluctuations, and pest infestations. Simultaneous planting led to market oversupply and price drops, but accurate pricing information facilitated quick market adaptation. Wholesalers influenced pricing dynamics and income levels, impacting farmers directly. To improve resilience, three main strategies were developed through ten key elements: proactive strategies (real-time SCM tracking, Weather Early Warning Systems, risk management team formation, and training), resistance strategies (partnerships, chili stock reserves, storage and drying technologies, GAP implementation, post-harvest management, agricultural insurance, and Fair Profit Sharing Agreements), and recovery and growth strategies (flexible distribution channels and customizable distribution centers). Furthermore, the study delves into the mediating and moderating effects between variables within the model. This research not only addresses a knowledge gap but also provides stakeholders with evidence to consider new strategies to enhance red chili supply resilience.
The Mass Rapid Transit (MRT) Purple Line project is part of the Thai government’s energy- and transportation-related greenhouse gas reduction plan. The number of passengers estimated during the feasibility study period was used to calculate the greenhouse gas reduction effect of project implementation. Most of the estimated numbers exceed the actual number of passengers, resulting in errors in estimating greenhouse gas emissions. This study employed a direct demand ridership model (DDRM) to accurately predict MRT Purple Line ridership. The variables affecting the number of passengers were the population in the vicinity of stations, offices, and shopping malls, the number of bus lines that serve the area, and the length of the road. The DDRM accurately predicted the number of passengers within 10% of the observed change and, therefore, the project can help reduce greenhouse gas emissions by 1289 tCO2 in 2023 and 2059 tCO2 in 2030.
This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.
Climate change is causing serious impacts, especially in sub-Saharan Africa, where poverty rates could increase by 2050 if climate and development measures are not taken. The health consequences are diverse and include transmissible and non-transmissible diseases. The objective of this study is to analyze the strategies implemented in health facilities in the Greater Lomé health region to cope with the impacts of climate change. The survey was carried out in 23 health facilities in 2022. It was a descriptive cross-sectional study which was carried out from July to September 2022. Qualitative and quantitative approaches were used. Non-probability sampling method and purposive choice technique were used. Four techniques made it possible to collect the data, namely documentary analysis, survey, interview and observation. The collected data were processed with Excel software and exported to SPSS for analysis. In total, 112 people were surveyed out of 161 planned. According to the results, 52.68% of health facilities did not implement adaptation strategies, 47.32% used adaptive strategies depending on to their means. Strategies exist but at low percentages due to limited technical and financial resources and the insufficiency of innovative policies. These strategies need to be supported in order to make them more effective. The study provides a basis for adopting innovative strategies and encouraging financing for adaptation actions.
This paper aims to shed light on community-based disaster mitigation and the challenges encountered by using the Pangandaran coast as a case study, one of Indonesia’s disaster-prone areas. Observations, in-depth interviews, and documentation studies were used to collect data. The findings of this study indicate that community-based disaster mitigation is well realized, as evidenced by community early preparedness forums collaborating with the government to provide socialization and education to the community. However, disaster preparedness still faces challenges, including; since some of the mitigation objects are tourists, mitigation efforts need to be carried out sustainably while not following the budget they have; mitigation support devices and facilities such as damaged or missing signs for evacuation routes, temporary shelters, assembly point locations, and Early Warning System (EWS) devices whose number is still not optimal; lack of participation of hotels or restaurants in disaster mitigation, especially in engaging in preventive actions to minimize disaster risk. This situation is a challenge in itself for disaster mitigation management, moreover, Pangandaran Village must maintain its status as a “Tsunami Ready” village.
This study investigates seismic risk and potential impacts of future earthquakes in the Sunda Strait region, known for its susceptibility to significant seismic events due to the subduction of the Indo-Australian Plate beneath the Eurasian Plate. The aim is to assess the likelihood of major earthquakes, estimate their impact, and propose strategies to mitigate associated risks. The research uses historical seismic data and probabilistic models to forecast earthquakes with magnitudes ranging from 6.0 to 8.2 Mw. The Gutenberg-Richter model helps project potential earthquake occurrences and their impacts. The findings suggest that the probability of a major earthquake could occur as early as 2026–2027, with a more significant event estimated to likely occur around 2031. Economic estimates for a 7.8–8.2 Mw earthquake suggest potential damage of up to USD 1.255 billion with significant loss of life. The study identifies key vulnerabilities, such as inadequate building foundations and ineffective disaster management infrastructure, which could worsen the impact of future seismic events. In conclusion, the research highlights the urgent need for comprehensive seismic risk mitigation strategies. Recommendations include reinforcing infrastructure to comply with seismic standards, implementing advanced early warning systems, and enhancing public education on earthquake preparedness. Additionally, government policies must address these issues by increasing funding for disaster management, enforcing building regulations, and incorporating traditional knowledge into construction practices. These measures are essential to reducing future earthquake impacts and improving community resilience.
Copyright © by EnPress Publisher. All rights reserved.