This study focused on the formulation and characterization of silver nanoparticles (AgNP) functionalized with d-limonene. The nanoparticles were functionalized by phase inversion and the synthesis of the nanoparticles was performed in situ; particle size was determined by laser diffraction, zeta potential and optical colloidal stability using Multiscan 20 for a period of 24 hours at 37 °C; the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the formulated material on Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Klebsiella oxytoca ATCC 700324, Enterococcus casseliflavus ATCC 700327, Escherichia coli BLEE, carbapenem-resistant Pseudomona aeruginosa were determined. The nanoparticles showed colloidal stability at a d-limonene concentration of 3.93%, silver ions at 1.61 × 10−3%, non-ionic adjuvant at 24% and ascorbic acid at 5.88%; citric acid/citrate (1:1) 0.48M for a pH of 4.5 was used as a buffer system. The formulation was classified as a polydisperse system (PD = 0.0851), with a zeta potential of −11.6 mV and average particle size of 81.5 ± 0.9 nm. A particle migration velocity of −0.199 ± 0.006 mm∙h−1, a constant transmission profile and backscattering profile with variations of 10% were evidenced, which represents a stable formulation. The nanoparticles presented an MIC and an MBC of 28 μg∙mL−1 (5.6 × 10−2% d-limonene and 4.7 × 10−5% AgNP) against all tested bacteria.
The cross wire projection welding of wires (Al 5182, = 4 mm) performed using the conventional (i.e. pneumatic) electrode force system was subjected to thorough numerical analysis. Calculations were performed until one of adopted boundary conditions, i.e., maximum welding time, maximum penetration of wires, the occurrence of expulsion or the exceeding of the temperature limit in the contact between the electrode and the welded material was obtained. It was observed that the ring weld was formed within the entire range of welding parameters. The process of welding was subjected to optimisation through the application of a new electromechanical electrode force system and the use of a special hybrid algorithm of electrode force and/or displacement control. Comparative numerical calculations were performed (using SORPAS software) for both electrode force systems. Technological welding tests were performed using inverter welding machines (1 kHz) provided with various electrode force systems. The research also involved the performance of metallographic and strength (peeling) tests as well as measurements of welding process characteristic parameters (welding current and voltage).
The welding process optimisation involving the use of the electromechanical force system and the application of the hybrid algorithm of force control resulted in i) more favourable space distribution of welding power, ii) energy concentration in the central zone of the weld, iii) favourable (desired) melting of the material within the entire weld transcrystallisation zone and iv) obtainment of a full weld nugget.
With the continuous development of facilities and horticulture, the area of vegetable planting in facilities increased year by year. Watermelon (Citrullus vulgaris Schrad) as the main cultivars within the facility, the continuous cropping problem is very serious, resulting in continuous cropping obstacles become increasingly obvious, the incidence of fusarium wilt increased year by year. Grafted watermelon roots developed to improve the growth of grafted roots of the conditions, resulting in robust plant growth. At the same time, the use of different purposes of the rootstock can make watermelon in different soil conditions under normal growth, such as the use of low temperature, drought, salt tolerance, barren and other characteristics of the rootstock. Secondly, the rootstock of the strong absorption of water absorption capacity, to promote the growth of grafted watermelon plants strong, large watermelon fruit, high yields. In addition, grafted watermelon seedlings grow fast early, for early maturing cultivation and overcome the seedless watermelon early growth slow defects is extremely favorable. So the use of pumpkin as a watermelon grafting rootstock, can effectively improve the effect of watermelon resistance to Fusarium wilts. And provide the theoretical basis and scientific basis for the further study of photosynthetic characteristics, disease resistance breeding and effective control of watermelon. In this experiment, the watermelon varieties with different resistance to fusarium wilt were selected, and the anti-fusarium wilt watermelon was studied systematically. There are changes in physiological characteristics during growth and development. In conclusion, grafting promotes the growth of watermelon and physiological characteristics of the index rose.
KEYWORDS: watermelon; fusarium wilt; growth period; physiological characteristics
Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
A Detailed geophysical investigation was conducted on Knossos territory of Crete Island. Main scope was the detection of underground archaeological settlements. Geophysical prospecting applied by an experienced geophysical team. According to area dimensions in relation to geological and structural conditions, the team designed specific geophysical techniques, by adopted non-catastrophic methods. Three different types of geophysical techniques performed gradually. Geophysical investigation consisted of the application of geoelectric mapping and geomagnetic prospecting. Electric mapping focusses on recording soil resistance distribution. Geomagnetic survey was performed by using two different types of magnetometers. Firstly, recorded distribution of geomagnetic intensity and secondly alteration of vertical gradient. Measured stations laid along the south-north axis with intervals equal to one meter. Both magnetometers were adjusted on a quiet magnetic station. Values were stored in files readable by geophysical interpretation software in XYZ format. Oasis Montaj was adopted for interpretation of measured physical properties distribution. Interpretation results were illustrated as color scale maps. Further processing applied on magnetic measurements. Results are confirmed by overlaying results from three different techniques. Geoelectric mapping contributed to detection of a few archaeological targets. Most of them were recorded by geomagnetic technique. Total intensity aimed to report the existence of magnetized bodies. Vertical gradient detected subsurface targets with clearly geometrical characteristics.
Copyright © by EnPress Publisher. All rights reserved.