The presence of a crisis has consistently been an inherent aspect of the Supply Chain, mostly as a result of the substantial number of stakeholders involved and the intricate dynamics of their relationships. The objective of this study is to assess the potential of Big Data as a tool for planning risk management in Supply Chain crises. Specifically, it focuses on using computational analysis and modeling to quantitatively analyze financial risks. The “Web of Science—Elsevier” database was employed to fulfill the aims of this work by identifying relevant papers for the investigation. The data were inputted into VOS viewer, a software application used to construct and visualize bibliometric networks for subsequent research. Data processing indicates a significant rise in the quantity of publications and citations related to the topic over the past five years. Moreover, the study encompasses a wide variety of crisis types, with the COVID-19 pandemic being the most significant. Nevertheless, the cooperation among institutions is evidently limited. This has limited the theoretical progress of the field and may have contributed to the ambiguity in understanding the research issue.
In today’s fast-moving, disrupted business environment, supply chain risk management is crucial. More critically, Industry 4.0 has conferred competitive advantages on supply chains through the integration of digital technologies into manufacturing and logistics, but it also implies several challenges and opportunities regarding the management of these risks. This paper looks at some ways emerging technologies, especially Artificial Intelligence (AI), help address pressing concerns about the management of risk and sustainability in logistics and supply chains. The study, using a systemic literature review (SLR) backed by a mapping study based on the Scopus database, reveals the main themes and gaps of prior studies. The findings indicate that AI can substantially enhance resilience through early risk identification, optimizing operations, enriching decision-making, and ensuring transparency throughout the value chain. The key message from the study is to bring out what technology contributes to rendering supply chains resilient against today’s uncertainties.
Due to the bounded rationality of decision-makers and the substitution effect of non-green products, retailers are not always profitable when selling green products. To assist retailers who may be disadvantaged in the game, this study constructs a two-stage green supply chain game model, considering the bounded rationality of decision-makers and the substitution effect of non-green products, and analyzes the impacts of two operational strategies that retailers can adopt—price-cutting strategy and early replenishment strategy. The research reveals that retailers tend to lower prices in the second stage when price reductions stimulate consumer purchases, enhancing their profitability. However, strategic retailers may raise prices in the first stage to create room for discounts later, potentially harming consumer interests. Contrary to expectations, anticipating future demand does not always improve supply chain profitability in the early replenishment strategy, which mainly depends on the market environment. Early replenishment deprives retailers of negotiation leverage in the second stage, and bulk orders may lead manufacturers to over-invest in green innovation. Therefore, this strategy is effective only when green innovation costs are low, consumer environmental awareness is high, or price sensitivity is low.
Interdependence between the United States (U.S.), European Union (EU) and Asia in the semiconductor industry, driven by specialization, can serve as a preventive measure against disruptions in the global semiconductor supply chain. Moreover, with rising geopolitical tensions, the cost-intensive nature of the semiconductor industry and a slowdown in demand, interdependence and partnership provide countries with opportunities and benefits. Specifically, by analyzing global trade patterns, developing the Interdependence Index within the semiconductor market, and applying the Grubel-Lloyd Index to the U.S., the EU, and Asian countries from 2011 to 2022, our findings reveal that interdependence enhances regional semiconductor supply chains, such as the establishment of semiconductor foundries in the U.S., Japan, and the EU; reduces dependence on a single supplier, such as the U.S. distancing from China; and increases market share in different semiconductor segments, as demonstrated by Taiwan in automobile chips. The evidence indicates that China heavily depends on foreign sources to meet its semiconductor demand, while Taiwan and South Korea specialize as foundry service providers with lower Interdependence Index values. The U.S., with a robust presence in semiconductor manufacturing and design, has a moderate dependence on semiconductor imports, whereas the EU demonstrates a higher level of interdependence because it lacks semiconductor foundries. The stage-specific analyses indicate that the U.S. and the EU rely on Asia for semiconductor devices, while China and Taiwan have a higher dependence on American intermediate inputs and European lithography machines.
In this paper, we will provide an extensive analysis of how Generative Artificial Intelligence (GenAI) could be applied when handling Supply Chain Management (SCM). The paper focuses on how GenAI is more relevant in industries, and for instance, SCM where it is employed in tasks such as predicting when machines are due for a check-up, man-robot collaboration, and responsiveness. The study aims to answer two main questions: (1) What prospects can be identified when the tools of GenAI are applied in SCM? Secondly, it aims to examine the following question: (2) what difficulties may be encountered when implementing GenAI in SCM? This paper assesses studies published in academic databases and applies a structured analytical framework to explore GenAI technology in SCM. It looks at how GenAI is deployed within SCM and the challenges that have been encountered, in addition to the ethics. Moreover, this paper also discusses the problems that AI can pose once used in SCM, for instance, the quality of data used, and the ethical concerns that come with, the use of AI in SCM. A grasp of the specifics of how GenAI operates as well as how to implement it successfully in the supply chain is essential in assessing the performance of this relatively new technology as well as prognosticating the future of generation AI in supply chain planning.
Rapid urban expansion gives rise to smart cities which pose immense logistical and supply chain challenges. The COVID-19 pandemic transformed the holistic system identified by Zhao et al. in 2021. The system encompasses logistics and supply chain integral to the concept of smart cities, with a focus on sustainability. This transformation requires an in-depth study on challenges of a common framework of policies for smart cities in countries comprising the Organisation for Economic Cooperation and Development (OECD). The study employs an extensive literature analysis for the period 2020–2022. an approach which contextualizes the model. The model identifies the causes, impact, and spillovers of new trends in logistics and supply, including the sustainability of adopted technologies. The study includes the variables involved, and barriers to creating a shared model. The results reveal that the two elements affecting the supply chain and transport in smart cities are Industry 4.0 and 5.0 technologies supporting specific sectors. The resilience of small and medium-sized enterprises positively impacts the sustainability of large urban centres. The study presents both factors that help and hinder the adoption of environmental, social, and economic sustainability technologies.
Copyright © by EnPress Publisher. All rights reserved.