Fire accidents are one of the serious security threats facing the metro, and the accurate determination of the index system and weights for fire assessment in underground stations is the key to conducting fire hazard assessment. Among them, the type and quantity of baggage, which varies with the number of passengers, is an important factor affecting the fire hazard assessment. This study is based on the combination of subjective and objective AHP (Analytic Hierarchy Process) with the available Particle Swarm Optimisation algorithm PSO (Particle Swarm Optimization) and the perfect CRITIC (Criteria Importance Through Intercriteria Correlation) empowered fuzzy evaluation method on the metro station fire hazard toughness indicator system and its weights were determined, and a fuzzy comprehensive evaluation model of metro station safety toughness under the influence of baggage was constructed. The practical application proves that the method provides a new perspective for the fire risk assessment of underground stations, and also provides a theoretical basis for the prevention and control of mobile fire load hazards in underground stations.
This research presents a comprehensive model for enhancing the road network in Thailand to achieve high efficiency in transportation. The objective is to develop a systematic approach for categorizing roads that aligns with usage demands and responsible agencies. This alignment facilitates the creation of interconnected routes, which ensure clear responsibility demarcation and foster efficient budget allocation for road maintenance. The findings suggest that a well-structured road network, combined with advanced information and communication technology, can significantly enhance the economic competitiveness of Thailand. This model not only proposes a framework for effective road classification but also outlines strategic initiatives for leveraging technology to achieve transportation efficiency and safety.
This study aims to develop a robust prioritization model for municipal projects in the Holy Metropolitan Municipality (Makkah) to address the challenges of aligning short-term and long-term objectives. The research explores How multi-criteria decision-making (MCDM) techniques can prioritize municipal projects effectively while ensuring alignment with strategic goals and local needs. The methodology employs the analytic hierarchy process (AHP) and exploratory factor analysis (EFA) to ensure methodological rigor and data adequacy. Data were collected from key stakeholders, including municipal planners and community representatives, to enhance transparency and reliability. The model’s validity was assessed through latent factor analysis, confirming the relevance of identified criteria and factors. Results indicate that flood prevention projects are the highest priority (0.4246), followed by road projects (0.3532), park construction (0.1026), utility projects (0.0776), and digital transformation (0.0416). The study highlights that certain factors are critical for evaluating and prioritizing municipal projects. “Capacity and Demand” emerged as the most influential factor (0.5643), followed by “Strategic Alignment” (0.2013), “Project Interdependence” (0.1088), “Increasing Investment” (0.0950), and “Risk” (0.0306). These findings are significant as they offer a structured, data-driven approach to decision-making aligned with Saudi Vision 2030. The proposed model optimizes resource allocation and project selection, representing a pioneering effort to develop the first prioritization framework specifically tailored to Makkah’s unique municipal needs. Notably, this is the first study to establish a prioritization method specifically for Makkah’s municipal projects, providing valuable contributions to the field.
Sustainability in road construction projects is hindered by the extensive use of non-renewable materials, high greenhouse gas emissions, risk cost, and significant disruption to the local community. Sustainability involves economic, environmental, and social aspects (triple bottom line). However, establishing metrics to evaluate economic, environmental, and social impacts is challenging because of the different nature of these dimensions and the shortage of accepted indicators. This paper developed a comprehensive method considering all three dimensions of sustainable development: economic, environmental, and social burdens. Initially, the economic, environmental, and social impact category indicators were assessed using the Life cycle approach. After that, the Analytic Hierarchy Process (AHP) method and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) were utilized to prioritize the alternatives according to the acquired weightings and sustainable indicators. The steps of the AHP method involve forming a hierarchy, determining priorities, calculating weighting factors, examining the consistency of these assessments, and then determining global priorities/weightings. The TOPSIS method is conducted by building a normalized decision matrix, constructing the weighted normalized decision matrix, evaluating the positive and negative solutions, determining the separation measures, and calculating the relative closeness to the ideal solution. The selected alternative performs the highest Relative Closeness to the Ideal Solution. Lastly, a case study was undertaken to validate the proposed method. In three alternatives in the case study (Cement Concrete, Dense-Graded Polymer Asphalt Concrete, and Dense-Graded Asphalt Concrete), option 3 showed the most sustainable performance due to its highest Relative Closeness to the Ideal Solution. Integrating AHP and TOPSIS methods combines both strengths, including AHP’s structured approach for determining criteria weights through pairwise comparisons and TOPSIS’s ability to rank choices based on their proximity to an ideal solution.
This study proposes a fuzzy analytic hierarchy process (FAHP) method to support strategic decision-makers in choosing a project management research agenda. The analytical hierarchy process (AHP) model is the basic tool used in this study. It is a mathematical tool for evaluating decisions with multiple alternatives by decomposing them into successive levels according to their degree of importance. The Sustainable Development Goals (SDG) oriented theme of project management was chosen from among four themes that emerged from a strategic monitoring study. The FAHP method is an effective decision-making tool for multiple aspects of project management. It eliminates subjectivity and produces decisions based on consistent judgment.
Copyright © by EnPress Publisher. All rights reserved.