This review focuses on ferrites, which are gaining popularity with their unique properties like high electrical resistivity, thermal stability, and chemical stability, making them suitable for versatile applications both in industry and in biomedicine. This review is highly indicative of the importance of synthesis technique in order to control ferrite properties and, consequently, their specific applications. While synthesizing the materials with consideration of certain properties that help in certain methods of preparation using polyol route, green synthesis, sol-gel combustion, or other wise to tailor make certain properties shown by ferrites, this study also covers biomedical applications of ferrites, including magnetic resonance imaging (MRI), drug delivery systems, cancer hyperthermia therapy, and antimicrobial agents. This was able to inhibit the growth of all tested Gram-negative and positive bacteria as compared with pure ferrite nanoparticles without Co, Mn or Zn doping. In addition, ferrites possess the ability to be used in environmental remediation; such as treatment of wastewater which makes them useful for high-surface-area and adsorption capacity due heavy metals and organic pollutants. A critical analysis of functionalization strategies and possible applications are presented in this work to emphasize the capability of nanoferrites as an aid for the advancement both biomedical technology and environmental sustainability due to their versatile properties combined with a simple, cost effective synthetic methodology.
Based on first-principles methods, the authors of this paper investigate spin thermoelectric effects of one-dimensional spin-based devices consisting of zigzag-edged graphene nanoribbons (ZGNRs), carbon chains and graphene nanoflake. It is found that the spin-down transmission function is suppressed to zero, while the spin-up transmission function is about 0.25. Therefore, an ideal half-metallic property is achieved. In addition, the phonon thermal conductance is obviously smaller than the electronic thermal conductance. Meantime, the spin Seebeck effects are obviously enhanced at the low-temperature regime (about 80K), resulting in the fact that spin thermoelectric figure of merit can reach about 40. Moreover, the spin thermoelectric figure of merit is always larger than the corresponding charge thermoelectric figure of merit. Therefore, the study shows that they can be used to prepare the ideal thermospin devices.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
[Objective]In order to explore the sustainable food security level in the Yangtze River Economic Belt, ensure food security and sustainable development of agricultural modernization, it is necessary to establish a scientific food security evaluation system to safeguard local food security.[Methods]This paper takes the food system of the Yangtze River Economic Belt in China as the research object, based on the food security research results at home and abroad, based on sustainable development thinking, combined with a new perspective of dynamic equilibrium research: Beginning with food normalcy, a comprehensive analysis of food production, food economy, social development, ecological security, and technical support for sustainable development is presented using the entropy-weighted TOPSIS model to build a food security evaluation system for sustainable development. [Conclusion]After systematic analysis, it is concluded that (1) the average value of food security score of the Yangtze River Economic Belt from 2008 to 2021 is 0.429, and the overall food in the Yangtze River Economic Belt is in general security level (0.400 ≤ Q1 ≤ 0.600), and the overall situation of food security is not optimistic, (2) from the segmentation of the Yangtze River Economic Belt, the high and low level of food security are divided into sections: midstream > downstream > upstream, and each province and city is slowly rising to different degrees. In this way, we propose general countermeasures to ensure local food security from the perspective of sustainable development.
Two-dimensional hexagonal boron nitride nanosheets (h-BNNS) were synthesized on silver (Ag) substrates via a scalable, room-temperature atmospheric pressure plasma (APP) technique, employing borazine as a precursor. This approach overcomes the limitations of conventional chemical vapor deposition (CVD), which requires high temperatures (>800 °C) and low pressures (10⁻2 Pa). The h-BNNS were characterized using FT-IR spectroscopy, confirming the presence of BN functional groups (805 cm⁻1 and 1632 cm⁻1), while FESEM/EDS revealed uniform nanosheet morphology with reduced particle size (80.66 nm at 20 min plasma exposure) and pore size (28.6 nm). XRD analysis demonstrated high crystallinity, with prominent h-BN (002) and h-BN (100) peaks, and Scherrer calculations indicated a crystallite size of ~15 nm. The coatings exhibited minimal disruption to UV-VIS reflectivity, maintaining Ag’s optical properties. Crucially, Vickers hardness tests showed a 39% improvement (38.3 HV vs. 27.6 HV for pristine Ag) due to plasma-induced cross-linking and interfacial adhesion. This work establishes APP as a cost-effective, eco-friendly alternative for growing h-BNNS on temperature-sensitive substrates, with applications in optical mirrors, corrosion-resistant coatings, energy devices and gas sensing.
Psychological capital is recognized as a positive and unique factor that plays a crucial role in human resource development and performance management. It has the potential to increase employees’ efforts towards achieving organizational goals and improving their entrepreneurial strategy skills. The objective of this study was to examine the contribution of psychological capital in enhancing the entrepreneurial strategy skills of employees in Saudi universities. The study employed a descriptive approach, specifically utilizing the survey study method. The study sample was intentionally selected from different categories within the study population. Data was collected from 530 participants using two questionnaires. The findings revealed that employees exhibited an average level of psychological capital, while their practice of entrepreneurial strategy skills was rated as poor. The study also demonstrated that psychological capital significantly contributes to enhancing employees’ entrepreneurial strategy skills. Furthermore, statistically significant differences were observed in the psychological capital of employees across certain variables, such as personal and functional aspects. The average level of psychological capital among employees indicates the need for further development in this area. By focusing on enhancing psychological capital, organizations can effectively improve the entrepreneurial strategy skills of their employees. It is clear that investing in the psychological capital of employees can lead to significant improvements in their entrepreneurial strategy skills. This highlights the potential for organizations to foster a more entrepreneurial mindset and approach among their staff members. Additionally, the study’s findings underscore the need to tailor interventions and development programs to address specific aspects of psychological capital that may vary across different employees. Overall, the study emphasizes that psychological capital is a valuable resource that should be nurtured and developed within the organizational context. By doing so, organizations can not only enhance the entrepreneurial strategy skills of their employees but also cultivate a more resilient, motivated, and engaged workforce. This has the potential to contribute to the overall success and innovation of Saudi universities and similar institutions.
Copyright © by EnPress Publisher. All rights reserved.