The advent of Artificial Intelligence (AI) has transformed Learning Management Systems (LMSs), enabled personalized adaptation and facilitated distance education. This study employs a bibliometric analysis based on PRISMA-2020 to examine the integration of AI in LMSs from an educational perspective. Despite the rapid progress observed in this field, the literature reveals gaps in the effectiveness and acceptance of virtual assistants in educational contexts. Therefore, the objective of this study is to examine research trends on the use of AI in LMSs. The results indicate a quadratic polynomial growth of 99.42%, with the years 2021 and 2015 representing the most significant growth. Thematic references include authors such as Li J and Cavus N, the journal Lecture Notes in Computer Science, and countries such as China and India. The thematic evolution can be observed from topics such as regression analysis to LMS and e-learning. The terms e-learning, ontology, and ant colony optimization are highlighted in the thematic clusters. A temporal analysis reveals that suggestions such as a Cartesian plane and a league table offer a detailed view of the evolution of key terms. This analysis reveals that emerging and growing words such as Learning Style and Learning Management Systems are worthy of further investigation. The development of a future research agenda emerges as a key need to address gaps.
In recent times, there has been a surge of interest in the transformative potential of artificial intelligence (AI), particularly within the realm of online advertising. This research focuses on the critical examination of AI’s role in enhancing customer experience (CX) across diverse business applications. The aim is to identify key themes, assess the impact of AI-powered CX initiatives, and highlight directions for future research. Employing a systematic and comprehensive approach, the study analyzes academic publications, industry reports, and case studies to extract theoretical frameworks, empirical findings, and practical insights. The findings underscore a significant transformation catalyzed by AI integration into Customer Relationship Management (CRM). AI enables personalized interactions, fortifies customer engagement through interactive agents, provides data-driven insights, and empowers informed decision-making throughout the customer journey. Four central themes emerge: personalized service, enhanced engagement, data-driven strategy, and intelligent decision-making. However, challenges such as data privacy concerns, ethical considerations, and potential negative experiences with poorly implemented AI persist. This article contributes significantly to the discourse on AI in CRM by synthesizing the current state, exploring key themes, and suggesting research avenues. It advocates for responsible AI implementation, emphasizing ethical considerations and guiding organizations in navigating opportunities and challenges.
Adequate sanitation is crucial for human health and well-being, yet billions worldwide lack access to basic facilities. This comprehensive review examines the emerging field of intelligent sanitation systems, which leverage Internet of Things (IoT) and advanced Artificial Intelligence (AI) technologies to address global sanitation challenges. The existing intelligent sanitation systems and applications is still in their early stages, marked by inconsistencies and gaps. The paper consolidates fragmented research from both academic and industrial perspectives based on PRISMA protocol, exploring the historical development, current state, and future potential of intelligent sanitation solutions. The assessment of existing intelligent sanitation systems focuses on system detection, health monitoring, and AI enhancement. The paper examines how IoT-enabled data collection and AI-driven analytics can optimize sanitation facility performance, predict system failures, detect health risks, and inform decision-making for sanitation improvements. By synthesizing existing research, identifying knowledge gaps, and discussing opportunities and challenges, this review provides valuable insights for practitioners, academics, engineers, policymakers, and other stakeholders. It offers a foundation for understanding how advanced IoT and AI techniques can enhance the efficiency, sustainability, and safety of the sanitation industry.
Remote sensing technologies have revolutionized forestry analysis by providing valuable information about forest ecosystems on a large scale. This review article explores the latest advancements in remote sensing tools that leverage optical, thermal, RADAR, and LiDAR data, along with state-of-the-art methods of data processing and analysis. We investigate how these tools, combined with artificial intelligence (AI) techniques and cloud-computing facilities, enhance the analytical outreach and offer new insights in the fields of remote sensing and forestry disciplines. The article aims to provide a comprehensive overview of these advancements, discuss their potential applications, and highlight the challenges and future directions. Through this examination, we demonstrate the immense potential of integrating remote sensing and AI to revolutionize forest management and conservation practices.
This study conducted a systematic literature review on current and emerging trends in the use of artificial intelligence (AI) for community surveillance, using the PRISMA methodology and the paifal.ai tool for the selection and analysis of relevant sources. Five main thematic areas were identified: AI technologies, specific applications, societal impact, regulations and public policy. Our findings revealed exponential growth in the development and implementation of AI technologies, with applications ranging from public safety to environmental monitoring. However, this advancement poses significant challenges related to privacy, ethics and governance, driving a debate on the need for appropriate regulations. The analysis also highlighted the disparity in the adoption of these technologies among different communities, suggesting a need for inclusive policies to ensure equitable benefits. This study contributes to the understanding of the current scenario of AI in community policing, providing a solid foundation for future research and developments in the field.
Copyright © by EnPress Publisher. All rights reserved.