Arabic rhetoric has traditionally relied on ancient texts and human interpretation for teaching purposes. The study investigates ChatGPT’s ability to analyze and interpret Arabic rhetorical devices, specifically examining its capacity to handle cultural and contextual elements in rhetorical analysis. Drawing on institutional implementation frameworks and recent educational technology research, this study examines policy considerations for Arabic rhetoric education in an AI-driven environment, with a particular focus on sustainable digital infrastructure development and systematic reforms needed to support AI integration. The study employed the comparative approach to analyze eight rhetorical examples, including metaphors (“Zaid is a lion”), similes (“Someone is a sea”), and metonymy (“A person full of ash”), then compare ChatGPT’s interpretations with traditional explanations from classical Arabic rhetoric texts, particularly “Dala’il al-I’jaaz” by al-Jurjani. The results demonstrate that ChatGPT can provide basic interpretations of simple rhetorical devices, but it struggles with understanding cultural contexts and multiple layers of meaning inherent in Arabic rhetoric. The findings indicate that AI tools, despite their potential for modernizing rhetoric education, currently serve best as supplementary teaching aids rather than replacements for traditional interpretative methods in Arabic rhetoric instruction.
The objective of this work was to analyze the effect of the use of ChatGPT in the teaching-learning process of scientific research in engineering. Artificial intelligence (AI) is a topic of great interest in higher education, as it combines hardware, software and programming languages to implement deep learning procedures. We focused on a specific course on scientific research in engineering, in which we measured the competencies, expressed in terms of the indicators, mastery, comprehension and synthesis capacity, in students who decided to use or not ChatGPT for the development and fulfillment of their activities. The data were processed through the statistical T-Student test and box-and-whisker plots were constructed. The results show that students’ reliance on ChatGPT limits their engagement in acquiring knowledge related to scientific research. This research presents evidence indicating that engineering science research students rely on ChatGPT to replace their academic work and consequently, they do not act dynamically in the teaching-learning process, assuming a static role.
This study aims to examine the pathways through which the user experience (UX) of ChatGPT, a representative of generative artificial intelligence, affects user loyalty. Additionally, it seeks to verify whether ChatGPT’s UX varies according to a user’s need for cognition (NFC). This research proposed and examined how ChatGPT’ UX affect user engagement and loyalty and used mediation analysis using PROCESS Macro Model 6 to test the impact of UX on web-based ChatGPT loyalty. Data were collected by an online marketing research company. 200 respondents were selected from a panel of individuals who had used ChatGPT within the previous month. Prior to the survey, the study objective was explained to the respondents, who were instructed to answer questions based on their experiences with ChatGPT during the previous month. The usefulness of ChatGPT was found to have a significant impact on interactivity, engagement, and intention to reuse. Second, it was revealed that evaluations of ChatGPT may vary according to users’ cognitive needs. Users with a high NFC, who seek to solve complex problems and pursue new experiences, perceived ChatGPT’s usefulness, interactivity, engagement, and reuse intentions more positively than those with a lower NFC. These results have several academic implications. First, this study validated the role of the UX in ChatGPT. Second, it validated the role of users’ need for cognition levels in their experience with ChatGPT.
Copyright © by EnPress Publisher. All rights reserved.