In developing countries, urban mobility is a significant challenge due to convergence of population growth and the economic attraction of urban centers. This convergence of factors has resulted in an increase in the demand for transport services, affecting existing infrastructure and requiring the development of sustainable mobility solutions. In order to tackle this challenge, it is necessary to create optimal services that promote sustainable urban mobility. The main objective of this research is to develop and validate a comprehensive methodology framework for assessing and selecting the most sustainable and environmentally responsible urban mobility services for decision makers in developing countries. By integrating fuzzy multi-criteria decision-making techniques, the study aims to address the inherent complexity and uncertainty of urban mobility planning and provide a robust tool for optimizing transportation solutions for rapid urbanization. The proposed methodology combines three-dimensional fuzzy methods of type-1, including AHP, TOPSIS and PROMETHEE, using the Borda method to adapt subjectivity, uncertainty, and incomplete judgments. The results show the advantages of using integrated methods in the sustainable selection of urban mobility systems. A sensitivity analysis is also performed to validate the robustness of the model and to provide insights into the reliability and stability of the evaluation model. This study contributes to inform decision-making, improves policies and urban mobility infrastructure, promotes sustainable decisions, and meets the specific needs of developing countries.
Eco-friendly and greener barrier materials are required to replace the synthetic packaging materials as they produce a threat to environment. These can be fabricated by natural polymers such as cellulose nanofiber (CNF). The sustainability of CNF was so amazing due to its potential for circular economy and provides alternative platform for synthetic plastics. The challenging task to fabricate CNF films still existed and also current methods have various limitations. CNF films have good oxygen permeability and the value was lower than synthetic plastics. However, CNF films have poor water vapour permeability and higher than that of synthetic plastics. The fabrication method is one of strong parameters to impact on the water permeability of CNF films. The deposition of CNF suspension on the stainless-steel plate via spraying, is a potential process for fabrication for CNF films acting as barrier material against water vapour. In spraying process, the time required to form CNF films in diameter of 15.9 cm was less than 1 min and it is independent of CNF content in the suspension. The uniqueness of CNF films via the spraying process was their surfaces, such as rough surface exposed to air and smooth surface exposed to stainless steel. Their surfaces were investigated by SEM, AFM and optical profilometry micrographs, confirming that the smooth surface was evaluated notable lower surface roughness. The spray coated surface was smooth and glossy and its impact on the water vapor permeability remains obscure. The spraying process is a flexible process to tailor the basis weight and thickness of CNF films can be adjusted by the spraying of CNF suspension with varying fibre content. The water vapour permeability of CNF films can be tailored via varying density of CNF films. The plot between water vapour transfer rate (WVTR)/water vapour and density of CNF films has been investigated. The WVP of spray coated CNF films varied from 6.99 ± 1.17 × 10−11 to 4.19 ± 1.45 × 10−11 g/m.s.Pa. with the density from 664 Kg/m3 to 1,412.08 Kg/m3. The WVP of CNF films achieved with 2 wt% CNF films (1,120 Kg/m3) was 3.91 × 10−11 g/m.s.Pa. These values were comparable with the WVP of synthetic plastics. Given this correspondence, CNF films via spraying have a good barrier against water vapour. This process is a potential for scale up and commercialization of CNF films as barrier materials.
Employees’ loyalty is essential for improving the organization’s performance, thus aiding sustainable economic growth. The study examines the relationship between employee loyalty, organizational performance, and economic sustainability in Malaysian organizations. The results indicate a robust positive correlation between organizational performance and employee loyalty, suggesting loyalty drives productivity, profitability, and operational efficiency. Additionally, the study highlights organizational performance as a mediator that connects loyalty to aggregate-level economic consequences, such as resilience and adaptability under volatile market conditions. The research emphasizes the role of leadership, company culture, and work environments that support cultivating loyalty. It also highlights how loyal employees can be a cornerstone of innovation and corporate social responsibility, which aligns with Malaysia’s sustainable development agenda. By addressing this, organizations are encouraged to adopt measures that can foster loyalty and ensure long-term economic sustainability, including employee engagement initiatives, talent management, and recognition systems. Research to come should investigate longitudinal dynamics, cross-cultural comparisons, and sector-specific factors to cement a better base of understanding about the impact of employee loyalty on organizational and economic outcomes.
This study addresses the critical issue of employee turnover intention within Malaysia’s manufacturing sector, focusing on the semiconductor industry, a pivotal component of the inclusive economy growth. The research aims to unveil the determinants of employee turnover intentions through a comprehensive analysis encompassing compensation, career development, work-life balance, and leadership style. Utilizing Herzberg’s Two-Factor Theory as a theoretical framework, the study hypothesizes that motivators (e.g., career development, recognition) and hygiene factors (e.g., compensation, working conditions) significantly influence employees’ intentions to leave. The quantitative research methodology employs a descriptive correlation design to investigate the relationships between the specified variables and turnover intention. Data was collected from executives and managers in northern Malaysia’s semiconductor industry, revealing that compensation, rewards, and work-life balance are significant predictors of turnover intention. At the same time, career development and transformational leadership style show no substantial impact. The findings suggest that manufacturing firms must reevaluate their compensation strategies, foster a conducive work-life balance, and consider a diverse workforce’s evolving needs and expectations to mitigate turnover rates. This study contributes to academic discourse by filling gaps in current literature and offers practical implications for industry stakeholders aiming to enhance employee retention and organizational competitiveness.
This study aimed to examine the compliance of post-disaster emergency assembly areas with their planning criteria in the Battalgazi district of Malatya province. This district is one of the settlements that was most affected by the two big earthquakes that occurred in Türkiye on 6 February 2023. The emergency assembly areas were evaluated qualitatively based on the criterion of “appropriateness”, with the sub-variables of “usability”, “accessibility”, and “safety”. They were also evaluated quantitatively based on the criterion of “adequacy” with the sub-variable “per capita m2”. There are a total of 103 neighborhoods in the district. However, there are only eight emergency assembly areas in total within its boundaries. According to the results of this study, only 7.5% of the current population of the district resides within 500 m of the emergency assembly areas. The fact that four emergency assembly areas (Hürriyet Park, Şehit Kemal Özalper High School, the Community Garden, Battalgazi Municipality) are situated next to each other and there are emergency assembly areas in only six of the 103 neighborhoods within the municipal boundaries shows that were significant problems in the decisions made regarding their locations. In addition, it was determined that there were disadvantages in terms of accessibility and usability within the criterion of appropriateness, while there were some positive aspects in terms of safety. When examined with regard to the criterion of adequacy, it was determined that the emergency assembly areas at Mişmiş Park, the Community Garden, Battalgazi Municipality, and Şehit Kemal Özalper High School were most adequate, while the emergency assembly areas at Hürriyet Park, Fırat Neighborhood Mukhtar, Nevzat Er Park, and 100 Yıl İmam Hatip Secondary School were least adequate.
Copyright © by EnPress Publisher. All rights reserved.