Tomato is one of the major solanaceous vegetables, which has a unique place in the global vegetable market. Instead of being a high-value crop, there is still a need to do improvement in its potential against various biotic and abiotic stressors that adequately demolish its real yield. Alternaria solani (causing early blight disease) is designated as one of the fatal organisms that may reduce tomato crop yield by up to 80%. There were lots of methods, viz., chemical, cultural and biological suggested to overcome it. However, chemical strategies are much in vogue, but they have several negative consequences for human health and the ecosystem. Enlightening this issue, the efficacy of various treatments, viz., chemical fungicides (Amistar Top®, Nativo®, and Contaf®), biochar and fungal bioagent (Trichoderma viride) was assessed under both in vivo and in vitro conditions. Induced resistance is mediated by several regulating pathways, like salicylic acid and jasmonic acid. These mediating pathways manipulate different physiological processes like growth and development, stress tolerance, and defence mechanisms of the plant. The assessment of results revealed that among all treatments biochar at 3.25% by weight consistently displayed remarkable effectiveness against the early blight infection by triggering resistance and improving the overall performance of tomato plants. This result is attributed to improved soil health, fastening mineralization as well as absorption processes, and boosting the plant’s immunity with the use of a higher concentration of biochar. Hence, it could be recommended for the overall improvement of tomato crop and its sustainability.
A gradually detailed geophysical investigation took place on Ancient Marina territory. In that area was extended Ancient Tritaea, according to responsible Archaeological Services. The first approach had been attempted since 1988 by applied electric mapping based on a twin-probe array. Later, the survey extended to the peripheral zone under the relative request from the 6th Archaeological Antiquity. A new approach was implemented by combining three different geophysical techniques, like electrical mapping, total intensity, and vertical gradient. These were applied on discrete geophysical grids. Electric mapping tried to separate the area into low and high-interest subareas according to soil resistance allocation. That technique detected enough geometrical characteristics, which worked as the main lever for the application of two other geophysical techniques. The other two techniques would be to certify the existence of geometrical characteristics, which divorced them from geological findings. Magnetic methods were characterized as a rapid technique with greater sensitivity in relation to electric mapping. Also, vertical gradient focuses on the horizontal extension of buried remains. Processing of magnetic measurements (total and vertical) certified the results from electric mapping. Also, both of the techniques confirmed the existence of human activity results, which were presented as a cross-section of two perpendicular parts. The new survey results showed that the new findings related to results from the previous approach. Geophysical research in that area is continuing.
High-risk pregnancies are a global concern, with maternal and fetal well-being at the forefront of clinical care. Pregnancy’s three trimesters bring distinct changes to mothers and fetal development, impacting maternal health through hormonal, physical, and emotional shifts. Fetal well-being is influenced by organ development, nutrition, oxygenation, and environmental exposures. Effective management of high-risk pregnancies necessitates a specialized, multidisciplinary approach. To comprehend this integrated approach, a comparative literature analysis using Atlas.ti software is essential. Findings reveal key aspects vital to high-risk pregnancy care, including intervention effectiveness, case characteristics, regional variations, economic implications, psychosocial impacts, holistic care, longitudinal studies, cultural factors, technological influences, and educational strategies. These findings inform current clinical practices and drive further research. Integration of knowledge across multidisciplinary care teams is pivotal for enhancing care for high-risk pregnancies, promoting maternal and fetal well-being worldwide.
Optimizing Storage Location Assignment (SLA) is essential for improving warehouse operations, reducing operational costs, travel distances and picking times. The effectiveness of the optimization process should be evaluated. This study introduces a novel, generalized objective function tailored to optimize SLA through integration with a Genetic Algorithm. The method incorporates key parameters such as item order frequency, storage grouping, and proximity of items frequently ordered together. Using simulation tools, this research models a picker-to-part system in a warehouse environment characterized by complex storage constraints, varying item demands and family-grouping criteria. The study explores four scenarios with distinct parameter weightings to analyze their impact on SLA. Contrary to other research that focuses on frequency-based assignment, this article presents a novel framework for designing SLA using key parameters. The study proves that it is advantageous to deviate from a frequency-based assignment, as considering other key parameters to determine the layout can lead to more favorable operations. The findings reveal that adjusting the parameter weightings enables effective SLA customization based on warehouse operational characteristics. Scenario-based analyses demonstrated significant reductions in travel distances during order picking tasks, particularly in scenarios prioritizing ordered-together proximity and group storage. Visual layouts and picking route evaluations highlighted the benefits of balancing frequency-based arrangements with grouping strategies. The study validates the utility of a tailored generalized objective function for SLA optimization. Scenario-based evaluations underscore the importance of fine-tuning SLA strategies to align with specific operational demands, paving the way for more efficient order picking and overall warehouse management.
This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.
A Detailed geophysical investigation was conducted on Knossos territory of Crete Island. Main scope was the detection of underground archaeological settlements. Geophysical prospecting applied by an experienced geophysical team. According to area dimensions in relation to geological and structural conditions, the team designed specific geophysical techniques, by adopted non-catastrophic methods. Three different types of geophysical techniques performed gradually. Geophysical investigation consisted of the application of geoelectric mapping and geomagnetic prospecting. Electric mapping focusses on recording soil resistance distribution. Geomagnetic survey was performed by using two different types of magnetometers. Firstly, recorded distribution of geomagnetic intensity and secondly alteration of vertical gradient. Measured stations laid along the south-north axis with intervals equal to one meter. Both magnetometers were adjusted on a quiet magnetic station. Values were stored in files readable by geophysical interpretation software in XYZ format. Oasis Montaj was adopted for interpretation of measured physical properties distribution. Interpretation results were illustrated as color scale maps. Further processing applied on magnetic measurements. Results are confirmed by overlaying results from three different techniques. Geoelectric mapping contributed to detection of a few archaeological targets. Most of them were recorded by geomagnetic technique. Total intensity aimed to report the existence of magnetized bodies. Vertical gradient detected subsurface targets with clearly geometrical characteristics.
Copyright © by EnPress Publisher. All rights reserved.