In light of swift urbanization and the lack of precise land use maps in urban regions, comprehending land use patterns becomes vital for efficient planning and promoting sustainable development. The objective of this study is to assess the land use pattern in order to catalyze sustainable township development in the study area. The procedure adopted involved acquiring the cadastral layout plan of the study area, scanning, and digitizing it. Additionally, satellite imagery of the area was obtained, and both the cadastral plan and satellite imagery were geo-referenced and digitized using ArcGIS 9.2 software. These processes resulted in reasonable accuracy, with a root mean square (RMS) error of 0.002 inches, surpassing the standard of 0.004 inches. The digitized cadastral plan and satellite imagery were overlaid to produce a layered digital map of the area. A social survey of the area was conducted to identify the specific use of individual plots. Furthermore, a relational database system was created in ArcCatalog to facilitate data management and querying. The research findings demonstrated the approach's effectiveness in enabling queries for the use of any particular plot, making it adaptable to a wide range of inquiries. Notably, the study revealed the diverse purposes for which different plots were utilized, including residential, commercial, educational, and lodging. An essential aspect of land use mapping is identifying areas prone to risks and hazards, such as rising sea levels, flooding, drought, and fire. The research contributes to sustainable township development by pinpointing these vulnerable zones and providing valuable insights for urban planning and risk mitigation strategies. This is a valuable resource for urban planners, policymakers, and stakeholders, enabling them to make informed decisions to optimize land use and promote sustainable development in the study area.
Analyzing ecosystem service values (ESV) is crucial for achieving sustainable development. The main objective of this study was to assess the ecosystem services of the Cisadane watershed in Indonesia, with specific goals: (i) examining the spatiotemporal dynamics of ESV using multi-year land use and land cover (LULC) data from 2000 to 2021, (ii) exploring trade-offs and synergies among various ecosystem services, and (iii) investigating the sensitivity of ESV to changes in LULC. The results unveiled a significant decrease in forested areas (21.2%) and rice fields (10.2%), leading to a decline in ESV of $196.37 billion (33.17%) from 2010 to 2021. Throughout the period from 2000 to 2021, interactions between ESV were mainly synergistic. Projected from the baseline year (2021), the decline in ESV is expected to persist, ranging from $24.78 billion to $124.28 million by 2030 and from $45.78 billion to $124.28 million by 2050. The total estimated ecosystem values exhibited an inelastic response in terms of ecosystem value coefficients. The study also emphasizes an inelastic response in total estimated ESV coefficient concerning ecosystem value coefficients. These findings underscore the urgent need for targeted conservation efforts and sustainable land management practices to mitigate the further decline in ecosystem services and safeguard the long-term well-being of the Cisadane watershed and its inhabitants.
This research delves into the urgent requirement for innovative agricultural methodologies amid growing concerns over sustainable development and food security. By employing machine learning strategies, particularly focusing on non-parametric learning algorithms, we explore the assessment of soil suitability for agricultural use under conditions of drought stress. Through the detailed examination of varied datasets, which include parameters like soil toxicity, terrain characteristics, and quality scores, our study offers new insights into the complexities of predicting soil suitability for crops. Our findings underline the effectiveness of various machine learning models, with the decision tree approach standing out for its accuracy, despite the need for comprehensive data gathering. Moreover, the research emphasizes the promise of merging machine learning techniques with conventional practices in soil science, paving the way for novel contributions to agricultural studies and practical implementations.
Land use changes have been demonstrated to exert a significant influence on urban planning and sustainable development, particularly in regions undergoing rapid urbanization. Tehran Province, as the political and economic capital of Iran, has undergone substantial growth in recent decades. The present study employs sophisticated Geographic Information System (GIS) instruments and the Google Earth Engine (GEE) platform to comprehensively track and analyze land use change over the past two decades. A comprehensive analysis of Landsat images of the Tehran metropolitan area from 2003 to 2023 has yielded significant insights into the patterns of land use change. The methodology encompasses the utilization of GIS, GEE, and TerrSet techniques for image classification, accuracy assessment, and change detection. The Kappa coefficients for the maps obtained for 2016 and 2023 were 0.82 and 0.87 for four classes: built-up, vegetation cover, barren land, and water bodies. The findings suggest that, over the past two decades, Tehran Province has undergone a substantial decline in ecological and vegetative areas, amounting to 2.4% (458.3 km2). Concurrently, the urban area and the barren lands have expanded by 287.5 and 125.5 km2, respectively. The increase in water bodies during this period is likely attributable to the reduction of vegetation cover and dam construction in the region. The present study demonstrates that remote sensing and GIS are excellent tools for monitoring environmental and sustainable urban development in areas experiencing rapid urbanization and land use changes.
Mapping land use and land cover (LULC) is essential for comprehending changes in the environment and promoting sustainable planning. To achieve accurate and effective LULC mapping, this work investigates the integration of Geographic Information Systems (GIS) with Machine Learning (ML) methodology. Different types of land covers in the Lucknow district were classified using the Random Forest (RF) algorithm and Landsat satellite images. Since the research area consists of a variety of landforms, there are issues with classification accuracy. These challenges are met by combining supplementary data into the GIS framework and adjusting algorithm parameters like selection of cloud free images and homogeneous training samples. The result demonstrates a net increase of 484.59 km2 in built-up areas. A net decrement of 75.44 km2 was observed in forest areas. A drastic net decrease of 674.52 km2 was observed for wetlands. Most of the wastelands have been converted into urban areas and agricultural land based on their suitability with settlements or crops. The classifications achieved an overall accuracy near 90%. This strategy provides a reliable way to track changes in land cover, supporting resource management, urban planning, and environmental preservation. The results highlight how sophisticated computational methods can enhance the accuracy of LULC evaluations.
The sustainable development of Madeira Island necessitates the implementation of more precise and targeted planning strategies to address its regional challenges. Given the urgency of this issue within the context of sustainability, planning approaches must be grounded in and reinforced by a comprehensive array of thematic studies to fully grasp the complexities involved. This research leverages Geographic Information Systems (GIS) to analyze land use and occupancy patterns and their evolution within the municipality of Machico on Madeira Island. The study provides a nuanced perspective on the urban structure’s stagnation in the region, while concurrently highlighting the dynamic shifts in agricultural practices. Furthermore, it elucidates the transformation of predominant native vegetation within the municipality from 1990 to 2018. Notably, the research underscores the alarming decline in native vegetation due to anthropogenic activities, emphasizing the need for more rigorous monitoring by regional authorities to safeguard and preserve these valuable landscapes, habitats, and ecosystems.
Copyright © by EnPress Publisher. All rights reserved.