In developing countries, urban mobility is a significant challenge due to convergence of population growth and the economic attraction of urban centers. This convergence of factors has resulted in an increase in the demand for transport services, affecting existing infrastructure and requiring the development of sustainable mobility solutions. In order to tackle this challenge, it is necessary to create optimal services that promote sustainable urban mobility. The main objective of this research is to develop and validate a comprehensive methodology framework for assessing and selecting the most sustainable and environmentally responsible urban mobility services for decision makers in developing countries. By integrating fuzzy multi-criteria decision-making techniques, the study aims to address the inherent complexity and uncertainty of urban mobility planning and provide a robust tool for optimizing transportation solutions for rapid urbanization. The proposed methodology combines three-dimensional fuzzy methods of type-1, including AHP, TOPSIS and PROMETHEE, using the Borda method to adapt subjectivity, uncertainty, and incomplete judgments. The results show the advantages of using integrated methods in the sustainable selection of urban mobility systems. A sensitivity analysis is also performed to validate the robustness of the model and to provide insights into the reliability and stability of the evaluation model. This study contributes to inform decision-making, improves policies and urban mobility infrastructure, promotes sustainable decisions, and meets the specific needs of developing countries.
This study explores the spatial distribution pattern of educational infrastructure development across districts and cities in North Sumatra, identifying significant disparities between urban and rural areas. The study aims to: (1) determine the distribution of educational development across districts and cities, (2) analyze global spatial autocorrelation, and (3) identify priority locations for educational development policies in North Sumatra Province. The methodology includes quantile analysis, Moran’s Global Index, and Local Indicators of Spatial Autocorrelation (LISA) using GeoDa software to address spatial autocorrelation. The results indicate that there are nine areas with a low School Participation Rate Index (SPRI), eleven areas with a low School Facilities and Infrastructure Index (SFII), and eleven areas with a low Regional Education Index (REI). Spatial autocorrelation analysis reveals that SFII shows positive spatial autocorrelation, while SPRI and REI exhibit negative spatial autocorrelation, indicating a high level of inequality between regions. Labuhan Batu Selatan and Labuhan Batu are identified as priorities for the provincial government in overseeing educational development policies.
Diamond-like Nanocomposites (DLN) is a newly member in amorphous carbon (a:C) family. It consists of two or more interpenetrated atomic scale network structures. The amorphous silicon oxide (a:SiO) is incorporated within diamond-like carbon (DLC) matrix i.e. a:CH and both the network is interpenetrated by Si-C bond. Hence, the internal stress of deposited DLN film decreases remarkably compare to DLC. The diamond-like properties have come due to deform tetrahedral carbon with sp3 configuration and high ratio of sp3 to sp2 bond. The DLN has excellent mechanical, electrical, optical and tribological properties. Those properties of DLN could be varied over a wide range by changing deposition parameters, precursor and even post deposition treatment also. The range of properties are: Resistivity 10-4 to 1014 Ωcm, hardness 10–22 GPa, coefficient of friction 0.03-0.2, wear factor 0.2-0.4 10-7mm3/Nm, transmission Vis-far IR, modulus of elasticity 150-200 GPa, residual stress 200-300 Mpa, dielectric constant 3-9 and maximum operating temperature 600°C in oxygen environment and 1200°C in O2 free air. Generally, the PECVD method is used to synthesize the DLN film. The most common procedures used for investigation of structure and composition of DLN films are Raman spectroscopy, Fourier transformed infrared spectroscopy (FTIR), HRTEM, FESEM and X-ray photo electron spectroscopy (XPS). Interest in the coating technology has been expressed by nearly every industrial segment including automotive, aerospace, chemical processing, marine, energy, personal care, office equipment, electronics, biomedical and tool and die or in a single line from data to beer in all segment of life. In this review paper, characterization of diamond-like nanocomposites is discussed and subsequently different application areas are also elaborated.
The main objective of this study was comparative advantages analysis at social price of Num-mango in the export channels. The examination of the domestic resource cost per shadow exchange rate (DRC/SER) ratio provides insights into the comparative advantage of the trading system in the Num-mango industry. A comprehensive study was conducted, with a total of 317 observations, with a specific emphasis on the significant individuals in Vinh Long, Vietnam. The comparative advantage of the Num-mango commerce system was inferred from a DRC/SER ratio below one, which may be attributed to the existence of two distinct export channels. The DRC/SER in export channel 1 exhibited values of 0.55, 0.67, and 0.53 over the three seasons. In season 1, export channel 2 had a score of 0.42, which then was 0.79 in season 2. The value of export channel 2 had a consistent upward trend during season 3, reaching its highest point of 0.3. It is recommended that regulators and governments provide export-focused incentives that prioritize the maximum comparative advantage. This study examines the concept of comparative advantage within export supply chains, specifically in relation to a diverse selection of tropical fruits and vegetables. Furthermore, it provides empirical evidence that supports the applicability and reliability of the Ricardian model.
Mangifera indica L. (Mango, Anacardiaceae) is a popular tropical evergreen tree known for its nutritional and medicinal values. It is native to India and Southeast Asia and is known as the “king of fruits” in India and the Philippines. It is considered important in Ayurveda and other systems of medicine. Mango fruit is unique in its taste, colour, aroma, and nutritional qualities. Mangoes are a rich source of polyphenols (Mangiferin, Gallotannins, Quercetin, Isoquercetin, Ellagic acid, Glucogallin, Kaempferol, Catechins, Tannins, and the unique Xanthonoid), phenolic acids (Hydroxybenzoic acids- Gallic, Vanillic, Syringic, Protocatechuic, and p-Hydroxybenzoic acids, Hydroxycinnamic acid derivatives-p-Coumaric, Chlorogenic, Ferulic, and Caffeic acids), flavonoids (β-carotene, α-carotene, β-cryptoxanthin, and Lutein), Vitamin A, Vitamin-B6 (pyridoxine), Vitamin-C, Vitamin-E, Carbohydrates, Amino acids, Organic acids, micronutrients (Potassium, Copper), fats (Omega-3 and 6 polyunsaturated fatty acids), dietary fibre and certain volatile compounds. About 25 different types of carotenoids have been isolated from the fruit pulp, which contributes to the colour of the fruit. Phytochemical and nutrient content may vary depending on the cultivar. Mangoes possess potential medicinal properties such as antioxidant, gastro-protective, anti-inflammatory, analgesic, immunomodulatory, anti-microbial, and many more. Mango fruit is an abundant source of all essential nutrients and phytochemicals; it could be ultilized as a nutritional supplement in the prevention and cure of several diseases. A comprehensive report on the nutritional and medicinal properties of fruit is presented below.
This study provides an evaluation of the environmental impact and economic benefits associated with the disposal of mango waste in Thailand, utilizing the methodologies of life cycle assessment (LCA) and cost-benefit analysis (CBA) in accordance with internationally recognized standards such as ISO 14046 and ISO 14067. The study aimed to assess the environmental impact of mango production in Thailand, with a specific focus on its contribution to global warming. This was achieved through the application of a life cycle assessment methodology, which enabled the determination of the cradle-to-grave environmental impact, including the estimation of the mango production’s global warming potential (GWP). Based on the findings of the feasibility analysis, mango production is identified as a novel opportunity for mango farmers and environmentally conscious consumers. This is due to the fact that the production of mangoes of the highest quality is associated with a carbon footprint and other environmental considerations. Based on the life cycle assessment conducted on conventional mangoes, taking into account greenhouse gas (GHG) emissions, it has been determined that the disposal of 1 kg of mango waste per 1 rai through landfilling results in an annual emission of 8.669 tons of carbon. This conclusion is based on comprehensive data collected throughout the entire life cycle of the mangoes. Based on the available data, it can be observed that the quantity of gas released through the landfilling process of mango waste exhibits an annual increase in the absence of any intervening measures. The cost benefit analysis conducted on the life cycle assessment (LCA) of traditional mango waste has demonstrated that the potential benefits derived from its utilization are numerous. The utilization of the life cycle assessment (LCA) methodology and the adoption of a sustainable business model exemplify the potential for developing novel eco-sustainable products derived from mango waste in forthcoming time.
Copyright © by EnPress Publisher. All rights reserved.