Farm households in developing countries are often involved in a variety of livelihood income-generating activities to achieve basic needs and enhance food security. However, little attention has been given to investigating the effect of livelihood diversification strategies on the adoption of agricultural land management practices. This study explored the nexus between livelihood diversification and Agricultural Land Management (ALM) practices in the Southern Ethiopian Highlands. Data for this study were gathered through a structured questionnaire, interviews, and focus group discussions. A total of 423 sample respondents were selected by using multistage random sampling techniques. The data were analyzed using the Inverse Herfindahl Hirschman Diversity Index (IHHDI), the multinomial logit model (MNL), and the probit regression model. The findings of the study revealed that on-farm income activities are the most dominant livelihood income strategies (69.1%), followed by non-farm (21%) and off-farm (9.64%). The multinomial logit model analysis demonstrated that variables such as sex, education, family size, distance to market, land size, extension contact, membership in cooperatives, and household income were the major drivers of farmers income diversification activities (p<0.05). The results of the probit analysis indicated that income from crop production, daily labor work, rents from farmland, and farm assets have a positive and significant effect on households' decisions to implement ALM practices. In contrast, incomes from remittance and migrant sources have a negative but statistically significant impact on the adoption of ALM measures. The farm household sources of income-generating strategies substantially affected the adoption intensity of ALM measures. Income generated from the on-farm sector alone cannot be considered a core income-generating activity for households or a means of achieving food security. Therefore, land management policies and program implementations should consider farmers’ livelihood diversification and income-generating strategies. In addition, such interventions need to promote sustainable farming practices, enhance innovation, and related measures for the adoption of ALM measures to ensure land sustainability.
This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: (1) A review of energy storage systems; (2) Results and calculations after a market analysis based on electricity consumption statistics covering the years 2005–2013; and (3) Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-the-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failed work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, which is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0–73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million euros or more (excluding initial costs and maintenance costs).
Enhancing the emphasis on incorporating sustainable practices reinforces a linear transition towards a circular economy by organizations. Nevertheless, although studies on circular economy demonstrate an increasing trend, the drivers that support circular economy practices towards sustainable business performance in the Small and Medium-Sized Enterprise (SME) sector, especially in developing nations, demand exploration. Accordingly, the study examines circular economy drivers, i.e., green human resource management, in establishing sustainability performance and environmental dynamism as moderating variables. The study engaged 207 SMEs and 621 respondents who were analyzed utilizing structural equation modeling. The analysis indicated that sustainable business performance was affected by green human resource management and a circular economy. Subsequently, the circular economy mediated the linkage between green human resources management and sustainable business performance. The environmental dynamism moderated the linkage between green human resources management and the circular economy.
Carbon based materials are really an integral component of our lives and widespread research regarding their properties was conducted along this process. The addition of dopants to carbon materials, either during the production process or later on, has been actively investigated by researchers all over the world who are looking into how doping can enhance the performance of materials and how to overcome the current difficulties. This study explores synthesis methods for nitrogen-doped carbon materials, focusing on advancements in adsorption of different pollutants like CO2 from air and organic, inorganic and ions pollutants from water, energy conversion, and storage, offering novel solutions to environmental and energy challenges. It addresses current issues with nitrogen-doped carbon materials, aiming to contribute to sustainable solutions in environmental and energy sciences. Alongside precursor types and synthesis methods, a significant relationship exists between nitrogen content percentage and adsorption capacity in nitrogen-doped activated carbon. Nitrogen content ranges from 0.64% to 11.23%, correlating with adsorption capacities from 0.05 mmol/g to 7.9 mmol/g. Moreover, an electrochemical correlation is observed between nitrogen atom increase and specific capacity in nitrogen-doped activated carbon electrodes. Higher nitrogen percentage corresponds to increased specific capacity and capacity retention. This comprehensive analysis sheds light on the potential of nitrogen-doped carbon materials and highlights their significance in addressing critical environmental and energy challenges.
Copyright © by EnPress Publisher. All rights reserved.