Introduction: Chatbots are increasingly utilized in education, offering real-time, personalized communication. While research has explored technical aspects of chatbots, user experience remains under-investigated. This study examines a model for evaluating user experience and satisfaction with chatbots in higher education. Methodology: A four-factor model (information quality, system quality, chatbot experience, user satisfaction) was proposed based on prior research. An alternative two-factor model emerged through exploratory factor analysis, focusing on “Chatbot Response Quality” and “User Experience and Satisfaction with the Chatbot.” Surveys were distributed to students and faculty at a university in Ecuador to collect data. Confirmatory factor analysis validated both models. Results: The two-factor model explained a significantly greater proportion of the data’s variance (55.2%) compared to the four-factor model (46.4%). Conclusion: This study suggests that a simpler model focusing on chatbot response quality and user experience is more effective for evaluating chatbots in education. Future research can explore methods to optimize these factors and improve the learning experience for students.
In the process of X-ray transmission imaging, the mutual occlusion between structures will lead to the image information overlap, and the computed tomography (CT) method is often required to obtain the structure information at different depths, but with low efficiency. To address these problems, an X-ray focused on imaging algorithm based on multi-line scanning is proposed, which only requires the scene target to pass through the detection area along a straight line to extract multi-view information, and uses the optical field reconstruction theory to achieve the de-obscured reconstruction of the structure at a specified depth with high real-time. The results of multi-line scan and X-ray reconstruction of the target show that the proposed method can reconstruct the information of any specified depth layer, and it can perform fast imaging detection of the mutually occluded target structures and improve the recognition of the occluded targets, which has a good application prospect.
The Agriculture Trading Platform (ATP) represents a significant innovation in the realm of agricultural trade in Malaysia. This web-based platform is designed to address the prevalent inefficiencies and lack of transparency in the current agricultural trading environment. By centralizing real-time data on agricultural production, consumption, and pricing, ATP provides a comprehensive dashboard that facilitates data-driven decision-making for all stakeholders in the agricultural supply chain. The platform employs advanced deep learning algorithms, including Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNN), to forecast market trends and consumption patterns. These predictive capabilities enable producers to optimize their market strategies, negotiate better prices, and access broader markets, thereby enhancing the overall efficiency and transparency of agricultural trading in Malaysia. The ATP’s user-friendly interface and robust analytical tools have the potential to revolutionize the agricultural sector by empowering farmers, reducing reliance on intermediaries, and fostering a more equitable trading environment.
The usage of cybersecurity is growing steadily because it is beneficial to us. When people use cybersecurity, they can easily protect their valuable data. Today, everyone is connected through the internet. It’s much easier for a thief to connect important data through cyber-attacks. Everyone needs cybersecurity to protect their precious personal data and sustainable infrastructure development in data science. However, systems protecting our data using the existing cybersecurity systems is difficult. There are different types of cybersecurity threats. It can be phishing, malware, ransomware, and so on. To prevent these attacks, people need advanced cybersecurity systems. Many software helps to prevent cyber-attacks. However, these are not able to early detect suspicious internet threat exchanges. This research used machine learning models in cybersecurity to enhance threat detection. Reducing cyberattacks internet and enhancing data protection; this system makes it possible to browse anywhere through the internet securely. The Kaggle dataset was collected to build technology to detect untrustworthy online threat exchanges early. To obtain better results and accuracy, a few pre-processing approaches were applied. Feature engineering is applied to the dataset to improve the quality of data. Ultimately, the random forest, gradient boosting, XGBoost, and Light GBM were used to achieve our goal. Random forest obtained 96% accuracy, which is the best and helpful to get a good outcome for the social development in the cybersecurity system.
The objective of this study was to examine the impact of utilizing smart algorithms on enhancing the operational performance of sports facilities in the Kingdom of Saudi Arabia. These algorithms, based on principles and concepts of artificial intelligence, aim to achieve functions such as learning, decision-making, data analysis, pattern recognition, planning, and problem-solving. The study aimed to identify the extent to which smart algorithms are utilized in sports facilities, assess the level of operational performance, explore the correlation between the use of smart algorithms and operational performance, and predict the level of operational performance based on the use of smart algorithms. The study employed a descriptive approach, specifically utilizing a survey study method. Participants included chairmen and members of boards of directors, executive directors, sports directors, administrators, specialists, and members of various committees. The study sample was intentionally selected from different categories within the study population. Two questionnaires were used to collect data from 325 participants. The findings revealed a lack of utilization of smart algorithms in sports facilities in the Kingdom of Saudi Arabia, indicating a low level of operational performance. Additionally, a correlation was observed between the use of smart algorithms and operational performance, suggesting that the level of operational performance can be predicted based on the utilization of smart algorithms. The study concludes that the implementation of intelligent algorithms can enhance the operational performance of sports facilities in the Kingdom of Saudi Arabia. It provides valuable insights into the effects of utilizing smart algorithms on improving operational performance.
Copyright © by EnPress Publisher. All rights reserved.