Rapid global warming and continuous climate change threaten the construction industry and human existence, especially in developing countries. Many developed countries are engaging their professional stakeholders on innovation and technology to mitigate climate change on humanity. Studies concerning inclusive efforts by developing countries’ stakeholders, including Nigeria, are scarce. Thus, this study investigates the construction industry’s practitioners’ preparedness to mitigate climate change through pre- and post-planning. Also, the study appraises climate change’s impact on construction activities and proffered measures to mitigate them. The research employed face-to-face data collection via a qualitative approach. The researchers engaged 33 knowledgeable participants. The study covered Abuja, Benin City, Owerri, and Lagos and achieved saturation at the 30th participant. The research employed a thematic approach to analyse the collected data. Findings reveal that Nigerian construction practitioners cannot cope with climate change impacts because of lax planning and inadequate technology to mitigate the issues. Also, the government’s attitude towards climate change has not helped matters. Also, the study suggested measures to mitigate the impact of climate change on construction activities in Nigeria. Therefore, as part of the research contributions, all-inclusive and integrated regulatory policies and programmes should be tailored toward mitigating climate change. This includes integrated stakeholder sensitisation, investment in infrastructure that supports anti-climate change, prioritising practices in the industry to achieve sustainable project transformation, and integration of climate change interventions into pre- and post-contract administration.
Transitioning to a green economy is a global concern, considered a pathway to sustainable development. This paper aims to investigate the effect of the transition into a green economy on Vietnam’s sustainable development and its two economic and environmental dimensions, with consideration of several essential issues including renewable energy, technological innovation, natural resource rents (oils, forest, and minerals), foreign direct investment, and trade. This paper utilizes data from 1996 to 2020 and then applies the autoregressive distributed lag (ARDL) method for analysis. The results conclude that renewable energy is a driving key to reducing environmental degradation, but it hampers economic growth, while the contrast occurs with technology. Our results emphasize the dependence on non-renewable energy, whereas the innovation of technology does not show a green orientation in Vietnam. Furthermore, there is a lack of sustainability in the effect of natural resource rents, foreign direct investment, and trade. Overall, the transition into a green economy in Vietnam does not illustrate the sustainable orientation. The findings of this research provide empirical evidence to clarify the relationship between this transition and its driving factor, with sustainable development and the two economic environment dimensions. In addition, this study will bring worthwhile implications for the policymakers and scholars on whether the transition to a green economy fulfills the orientation towards sustainability, then enhancing the economy's efficiency to achieve green growth, following the pathway to sustainable development.
With the economic development and the carbon emissions cluster rise, this study uses CiteSpace, VOSviewer, and R-based Bibliometrix software to visualize and analyze the relevant literature on carbon emissions retrieved from the Web of Science database from 2014 to 2023. Through the analysis of the trend of publication volume, author co-citation analysis, institutional co-citation analysis, country co-citation analysis, literature co-citation analysis, thematic analysis of research, research evolution, and other related contents, it reveals the main academic forces, hot research areas, thematic focus changes and cutting-edge trends of international carbon emission research. The results of the study found that the themes of international carbon emissions research focus on carbon emissions, the drivers of carbon neutrality, and the impacts of climate change. An in-depth study of these aspects can help formulate more effective climate policies and emission reduction strategies to achieve global carbon neutrality and combat climate change.
The world has changed to a massive degree in the past thousands of years. Most of the time, the amount of carbon dioxide in the atmosphere remains constant. In the late 18th century, according to the sources of CDIAC and NOOA, the level of carbon dioxide began to rise, and then in the 20th century, it went through the roof, reaching levels that had not been seen in nature for millions of years. The increase in carbon in the atmosphere is the major contributing factor to climate change. The key to reversing the damage is restoring the earth’s delicate, balanced carbon cycle. As carbon cycle depicts the way carbon moves around the earth. It consists of sources that emit the carbon component into the atmosphere. The biological side of the carbon cycle is well balanced due to respiration, where carbon dioxide is released into the atmosphere, then plants, bacteria, and algae take carbon dioxide out of the atmosphere during photosynthesis and the process they use to generate chemical energy. On the other hand, oceans are the best sources and sinks; carbon dioxide is endlessly being absorbed into the ocean and released from the oceans almost exactly at the same rate, which is rapidly influencing the carbon cycle. Similarity is a methodology that has many applications in the real world. The current research article is destined to study how statistics of carbon emission metrics are alike and belong to one cluster. In the current study, the research is destined to derive a similarity analysis of several countries’ carbon emission metrics that are alike and often fall in the range of [0, 1]. And deriving the proximity of the carbon emission metrics leading to similarity or dissimilarity. In the current context of data matrices of numerical data, an Euclidian measure of distance between two data elements will yield a degree of similarity. The current research article is destined to study the similarity analysis of carbon emission metrics through fuzzy entropy clustering.
The increase in world carbon emissions is always in line with national economic growth programs, which create negative environmental externalities. To understand the effectiveness of related factors in mitigating CO2 emissions, this study investigates the intricate relationship among macro-pillars such as economic growth, foreign investment, trade and finance, energy, and renewable energy with CO2 emissions of the high gross domestic product economies in East Asia Pacific, such as China, Japan, Korea, Australia and Indonesia (EAP-5). Through the application of the Vector Error Correction Model (VECM), this research reveals the long-term equilibrium and short-term dynamics between CO2 emissions and selected factors from 1991 to 2020. The long-term cointegration vector test results show that economic growth and foreign investment contribute to carbon reduction. Meanwhile, the short-term Granger causality test shows that economic growth has a two-way causality towards carbon emissions, while energy consumption and renewable energy consumption have a one-way causality towards carbon emissions. In contrast, the variables trade, foreign direct investment, and domestic credit to the private sector do not have two-way causality towards CO2 emissions. The findings reveal that economic growth and foreign investment play significant roles in carbon reduction, which are observed in long-term causality relationships, while energy consumption and renewable energy are notable factors. Thus, the study offers implications for mitigating environmental concerns on national economic growth agendas by scrutinizing and examining the efficacy of related factors.
From the perspective of the corporate life cycle, this study investigates the transmission mechanism of ‘technological innovation-financing constraints-carbon emission reduction’ in energy companies using panel data and mediating models, focusing on listed energy companies from 2014 to 2020. It explores the stage characteristics of this mechanism during different life cycle phases and conducts heterogeneity tests across industries and regions. The results reveal that technological innovation positively influences carbon emission reduction in energy enterprises, demonstrating significant life cycle stage characteristics, specifically more pronounced in mature companies than in growing or declining companies. Financing constraints play a mediating role between technological innovation and carbon reduction, but this is only effective during the growth and maturity stages. Further research shows that the impact of technological innovation on carbon emission reduction and the mediating role of financing constraints exhibit heterogeneity across different stages of the life cycle, industries, and regions. The conclusions of this paper provide references for energy companies in planning rational emission reduction strategies and for government departments in policy-making.
Copyright © by EnPress Publisher. All rights reserved.