Beach protection is vital to reduce the damage to shorelines and coastal areas; one of the artificial protections that can be utilized is the tetrapod. However, much damage occurred when using a traditional tetrapod due to the lack of stability coefficient (KD). Therefore, this research aims to increase the stability coefficient by providing minor modifications to the cape of the tetrapod, such as round-caped or cube-caped. The modification seeks to hold the drag force from the wave and offer a good interlocking in between the tetrapod. This research applied physical model test research using a breakwater model made from the proposed innovative tetrapod with numerous variations in dimensions and layers simulated with several scenarios. The analysis was carried out by graphing the relationship between the parameters of the measurement results and the relationship between dimensionless parameters, such as wave steepness H/gT2, and other essential parameters, such as the KD stability number and the level of damage in %. The result shows that the modified and innovative tetrapod has a more excellent KD value than the conventional tetrapod. In addition, the innovative tetrapod with the cube-shaped has a recommended KD value greater than the round shape. This means that for the modified tetrapod structure and the same level of security, the required weight of the tetrapod with the cube cap will be lighter than the tetrapod with the round cap. These findings have significant practical implications for coastal protection and engineering, potentially leading to more efficient and cost-effective solutions.
Leisure education has an impact not only on individuals but also on the environment and society. The present study aimed to explore and describe experts’ knowledge and experience about leisure education to develop leadership among youth with physical disabilities. The present study used a qualitative research approach through an exploratory design to answer the research question. Five participants were purposefully recruited and selected based on their expertise in the topic of interest. Participants’ expertise ranged from leisure, recreation, youth and leadership. The participants had experience working in higher education institutions, and community projects, held doctorate qualifications, and have over ten years in this field. Data was collected online using Google Meet software using semi-structured interviews with open-ended questions. Data was analyzed using a thematic analysis framework and guidelines. The findings of this study suggest that youth with physical disabilities can develop personal capacity through leisure education programmes. Leisure education programmes can be meaningful to youth with physical disabilities and have a developmental impact, including leadership. Youth with physical disabilities’ capacities and abilities should be nurtured and protected to allow growth and independence. The implications are that leisure education programmes for leadership development must be intentional to achieve the intended outcome.
This work investigates epoxy composites reinforced by randomly oriented, short glass fibres and silica microparticles. A full-factorial experiment evaluates the effects of glass fibre mass fraction (15 wt% and 20 wt%) and length (5 mm and 10 mm), and the mass fraction of silica microparticles (5 wt% and 10 wt%) on the apparent density and porosity, as well as the compressive and tensile strength and modulus of the hybrid composites. Hybrid epoxy composites present significantly higher tensile strength (9%) and modulus (57%), as well as compressive strength (up to 15%) relative to pure epoxy.
The present study aimed to delineate subsurface features and identify prospective metallic mineral deposits in the Adıyaman-Besni area, situated within the Southeastern Anatolian Thrust Belt of Turkey. This region, characterized by ophiolitic mélanges and volcanic massive sulfide (VMS) deposits in its geological framework, possesses significant mineralization potential, encompassing copper, lead, and various other sulfide minerals. Utilizing the combined methodologies of Induced Polarization (IP) and Electrical Resistivity Tomography (ERT), a comprehensive electrical mapping of the subsurface structures was conducted, revealing that mineralized zones had low resistivity and high chargeability. The findings indicate that the combined use of IP and ERT techniques yields excellent precision in accurately delineating the features of sulfide mineralization and the peripheries of mineral deposits. This study offers fundamental data for the economic assessment of prospective mineral deposits in the Adıyaman-Besni region and underscores the benefits of IP and ERT techniques in subsurface mapping and mineralization delineation investigations. The mineralized zone has low resistivity (< 50 ohm-m) and strong chargeability (> 30 ms), according to geophysical tests. It also offers a methodological framework for subsequent mineral exploration research in analogous geological formations.
A Detailed geophysical investigation was conducted on Knossos territory of Crete Island. Main scope was the detection of underground archaeological settlements. Geophysical prospecting applied by an experienced geophysical team. According to area dimensions in relation to geological and structural conditions, the team designed specific geophysical techniques, by adopted non-catastrophic methods. Three different types of geophysical techniques performed gradually. Geophysical investigation consisted of the application of geoelectric mapping and geomagnetic prospecting. Electric mapping focusses on recording soil resistance distribution. Geomagnetic survey was performed by using two different types of magnetometers. Firstly, recorded distribution of geomagnetic intensity and secondly alteration of vertical gradient. Measured stations laid along the south-north axis with intervals equal to one meter. Both magnetometers were adjusted on a quiet magnetic station. Values were stored in files readable by geophysical interpretation software in XYZ format. Oasis Montaj was adopted for interpretation of measured physical properties distribution. Interpretation results were illustrated as color scale maps. Further processing applied on magnetic measurements. Results are confirmed by overlaying results from three different techniques. Geoelectric mapping contributed to detection of a few archaeological targets. Most of them were recorded by geomagnetic technique. Total intensity aimed to report the existence of magnetized bodies. Vertical gradient detected subsurface targets with clearly geometrical characteristics.
Copyright © by EnPress Publisher. All rights reserved.