This research examines three data mining approaches employing cost management datasets from 391 Thai contractor companies to investigate the predictive modeling of construction project failure with nine parameters. Artificial neural networks, naive bayes, and decision trees with attribute selection are some of the algorithms that were explored. In comparison to artificial neural network’s (91.33%) and naive bays’ (70.01%) accuracy rates, the decision trees with attribute selection demonstrated greater classification efficiency, registering an accuracy of 98.14%. Finally, the nine parameters include: 1) planning according to the current situation; 2) the company’s cost management strategy; 3) control and coordination from employees at different levels of the organization to survive on the basis of various uncertainties; 4) the importance of labor management factors; 5) the general status of the company, which has a significant effect on the project success; 6) the cost of procurement of the field office location; 7) the operational constraints and long-term safe work procedures; 8) the implementation of the construction system system piece by piece, using prefabricated parts; 9) dealing with the COVID-19 crisis, which is crucial for preventing project failure. The results show how advanced data mining approaches can improve cost estimation and prevent project failure, as well as how computational methods can enhance sustainability in the building industry. Although the results are encouraging, they also highlight issues including data asymmetry and the potential for overfitting in the decision tree model, necessitating careful consideration.
Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
Scholars widely agree that modular technologies can significantly improve environmental sustainability compared to traditional building methods. There has been considerable debate about the viability of replacing traditional cast-in-place structures with modular construction projects. The primary purpose of this study is to determine the feasibility of using modular technology for construction projects in island areas. Thus, it is necessary to investigate the potential problems and suitable solutions associated with modular building project implementation. This study is accomplished through the use of qualitative and quantitative methods. It systematically examines desk research based on the wide academic literature and real case studies, collating secondary data from government files, news articles, professional blogs, and interviews. This research identifies several important barriers to the use of modular construction projects. Among the issues are the complexity of stakeholder engagement, limited practical skills and construction methodologies, and a scarcity of manufacturing capacity specialised for modular components. Fortunately, these unresolved challenges can be mitigated through fiscal incentives and governmental regulations, induction training programmes, efficient management strategies, and adaptive governance approaches. As a result, the findings support the feasibility of starting and advancing modular building initiatives in island areas. Project developers will likely be more willing to embrace and commit resources to initiate modular building projects. Additional studies can be undertaken to acquire the most recent first-hand data for detailed validation.
This study aims to develop a robust prioritization model for municipal projects in the Holy Metropolitan Municipality (Makkah) to address the challenges of aligning short-term and long-term objectives. The research explores How multi-criteria decision-making (MCDM) techniques can prioritize municipal projects effectively while ensuring alignment with strategic goals and local needs. The methodology employs the analytic hierarchy process (AHP) and exploratory factor analysis (EFA) to ensure methodological rigor and data adequacy. Data were collected from key stakeholders, including municipal planners and community representatives, to enhance transparency and reliability. The model’s validity was assessed through latent factor analysis, confirming the relevance of identified criteria and factors. Results indicate that flood prevention projects are the highest priority (0.4246), followed by road projects (0.3532), park construction (0.1026), utility projects (0.0776), and digital transformation (0.0416). The study highlights that certain factors are critical for evaluating and prioritizing municipal projects. “Capacity and Demand” emerged as the most influential factor (0.5643), followed by “Strategic Alignment” (0.2013), “Project Interdependence” (0.1088), “Increasing Investment” (0.0950), and “Risk” (0.0306). These findings are significant as they offer a structured, data-driven approach to decision-making aligned with Saudi Vision 2030. The proposed model optimizes resource allocation and project selection, representing a pioneering effort to develop the first prioritization framework specifically tailored to Makkah’s unique municipal needs. Notably, this is the first study to establish a prioritization method specifically for Makkah’s municipal projects, providing valuable contributions to the field.
This study examines conditions that impact PPP delivery success or failure in the roadways sector in India using Qualitative Comparative Analysis. QCA is well-suited for problems where multiple factors combine to create pathways leading to an outcome. Past investigations have compared PPP and non-PPP project delivery performance, but this study examines performance within PPPs by uncovering a set of conditions that combine to influence the success or failure road PPP project delivery in India. Based on data from 21 cases, pathways explaining project delivery success or failure were identified. Specifically, PPPs with high concessionaire equity investment and low regional industrial activity led to project delivery success. Projects with lower concessionaire equity investment and low reliance on toll revenue and with either: (a) high project technical complexity or (b) high regional industrial activity, led to project delivery failure. The pathways identified did not have coverage values that they were extremely strong. Coverage strength was hindered by lack of access to information on additional conditions that could be configurationally important. Further, certain characteristics of the Indian market limit generalization. Identification of combinations of conditions leading to PPP project delivery success or failure improves knowledge of the impacts of structure and characteristics of these complex arrangements. This study is one of the first to use fuzzy QCA to understand project delivery success/failure in road PPP projects. Moreover, this study takes into account factors specific to a sector and delivery mode to explain project delivery performance.
Developing Asia’s infrastructure gap results from both inadequate public resources and a lack of effective channels to mobilize private resources toward desired outcomes. The public-private partnership (PPP) mechanism has evolved to fill the infrastructure gap. However, PPP projects are often at risk of becoming distressed, or worst, being terminated because of the long-term nature of contracts and the many different stakeholders involved. This paper applies survival-time hazard analysis to estimate how project-related, macroeconomic, and institutional factors affect the hazard rate of the projects. Empirical results show that government’s provision of guarantees, involvement of multilateral development banks, and existence of a dedicated PPP unit are important for a project’s success. Privately initiated proposals should be regulated and undergo competitive bidding to reduce the hazard rate of the project and the corresponding burden to the government. Economic growth leads to successful project outcomes. Improved legal and institutional environment can ensure PPP success.
Copyright © by EnPress Publisher. All rights reserved.