Purpose: Today’s challenges underscore the importance of energy across all segments of life. This scientific paper investigates the multifaceted relationship between energy efficiency, energy import reliance, population heating access, renewable energy integration, electricity production capacities, internet utilization, structural EU funds, and education/training within the framework of economic development. Methodology: Using data from selected European countries and employing self-organizing neural networks (SOM) and linear regression, this research explores how these interconnected factors influence the journey toward a sustainable and prosperous economic future. Results: The analysis revealed a strong connection between energy efficiency and numerous socioeconomic factors of modern times, with most of these connections being non-linear in nature. Conclusion: As countries work toward sustainable development goals, prioritizing energy efficiency can contribute to improved quality of life, economic growth, and environmental sustainability.
This paper examines the relationship between renewable energy (RE) generation, economic factors, infrastructure, and governance quality in ASEAN countries. Based on the Fixed Effects regression model on panel data spanning the years 2002–2021, results demonstrate that domestic capital investment, foreign direct investment, governance effectiveness, and crude oil price exhibit an inverse yet significant relationship with RE generation. An increase in those factors will lead to a decline in RE generation. Meanwhile, economic growth and infrastructure have a positive relationship, which implies that these factors act as stimulants for RE generation in the region. Hence, it is advisable to prioritise policies that foster economic growth, including offering tax breaks specifically for RE projects. Additionally, it’s crucial to streamline governance processes to facilitate infrastructure conducive to RE generation, along with investing in RE infrastructure. This could be achieved by establishing one-stop centres for consolidating permitting processes, which would streamline the often-bureaucratic process. However, given the extensive time period covered, future research should examine the short-term relationship between the variables to address any potential temporal trends between the factors and RE generation.
The conversion of the energy supply to renewable sources (wind, photovoltaics) will increase the volatility in electricity generation in the future. In order to ensure a balanced power balance in the power grid, storage is required - not only for a short time, but also seasonally. The bidirectional coupling of existing energy infrastructure with the power grid can help here by using the electricity in electrolysis systems to produce hydrogen. The hydrogen can be mixed with natural gas in the existing infrastructure (gas storage, pipelines) to a limited extent or converted directly to methane in a gas-catalytic reaction, methanation, with carbon dioxide and/or carbon monoxide. By using the natural gas infrastructure, the electricity grids are relieved and renewable energies can also be stored over long periods of time. Another advantage of this technology, known as “Power-to-Gas”, is that the methane produced in this way represents a sink for CO2 emissions, as it replaces fossil sources and CO2 is thus fed into a closed cycle.
Research in the field of Power-to-Gas technology is currently addressing technological advances both in the field of electrolysis and for the subsequent methanation, in particular to reduce investment costs. In the field of methanation, load-flexible processes are to be developed that are adapted to the fluctuating supply of hydrogen. The profitability of the Power-to-Gas process chain can be increased through synergistic integration into existing industrial processes. For example, an integrated smelting works offers a promising infrastructural environment, since, on the one hand, process gases containing carbon are produced in large quantities and, on the other hand, the oxygen as a by-product from the water electrolysis can be used directly. Such concepts suggest an economic application of Power-to-Gas technology in the near future.
Transitioning to a green economy is a global concern, considered a pathway to sustainable development. This paper aims to investigate the effect of the transition into a green economy on Vietnam’s sustainable development and its two economic and environmental dimensions, with consideration of several essential issues including renewable energy, technological innovation, natural resource rents (oils, forest, and minerals), foreign direct investment, and trade. This paper utilizes data from 1996 to 2020 and then applies the autoregressive distributed lag (ARDL) method for analysis. The results conclude that renewable energy is a driving key to reducing environmental degradation, but it hampers economic growth, while the contrast occurs with technology. Our results emphasize the dependence on non-renewable energy, whereas the innovation of technology does not show a green orientation in Vietnam. Furthermore, there is a lack of sustainability in the effect of natural resource rents, foreign direct investment, and trade. Overall, the transition into a green economy in Vietnam does not illustrate the sustainable orientation. The findings of this research provide empirical evidence to clarify the relationship between this transition and its driving factor, with sustainable development and the two economic environment dimensions. In addition, this study will bring worthwhile implications for the policymakers and scholars on whether the transition to a green economy fulfills the orientation towards sustainability, then enhancing the economy's efficiency to achieve green growth, following the pathway to sustainable development.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
Providing and using energy efficiently is hampered by concerns about the environment and the unpredictability of fossil fuel prices and quantities. To address these issues, energy planning is a crucial tool. The aim of the study was to prioritize renewable energy options for use in Mae Sariang’s microgrid using an analytical hierarchy process (AHP) to produce electricity. A prioritization exercise involved the use of questionnaire surveys to involve five expert groups with varying backgrounds in Thailand’s renewable energy sector. We looked at five primary criteria. The following four combinations were suggested: (1) Grid + Battery Energy Storage System (BESS); (2) Grid + BESS + Solar Photovoltaic (PV); (3) Grid + Diesel Generator (DG) + PV; and (4) Grid + DG + Hydro + PV. To meet demand for electricity, each option has the capacity to produce at least 6 MW of power. The findings indicated that production (24.7%) is the most significant criterion, closely followed by economics (24.2%), technology (18.5%), social and environmental (18.1%), and structure (14.5%). Option II is strongly advised in terms of economic and structural criteria, while option I has a considerable advantage in terms of production criteria and the impact on society and the environment. The preferences of options I, IV, and III were ranked, with option II being the most preferred choice out of the four.
Copyright © by EnPress Publisher. All rights reserved.