In the face of growing competition, industrial and commercial firms need more effective strategies to gain competitive advantages. This study investigates the role of enterprise risk management (ERM) as a mediator in highlighting the significance of innovation capability on profitability in industrial and commercial firms listed on the Amman Stock Exchange (ASE). Data were collected from 244 respondents using a standardized questionnaire and analyzed with SPSS software. The results indicate that the innovation capability has an impact on profitability in industrial and commercial firms, as well as their ERM practices. Additionally, ERM mediates the relationship between innovation capability and profitability. Firms that adopt distinctive innovation strategies tend to maintain formal ERM strategies, which in turn enhance market superiority and profitability. This research offers some significant managerial ramifications that may be essential for business owners, executives, and decision-makers involved in the development of firms.
This paper assesses South Africa’s massive infrastructure drive to revive growth and increase employment. After years of stagnant growth, this is now facing a deep economic crisis, exacerbated by the COVID-19 pandemic. This drive also comes after years of weak infrastructure investment, widening the infrastructure deficit. The plan outlines a R1 trillion investment drive, primarily from the private sector through the Infrastructure Fund over the next 10 years (Government of South Africa, 2020). This paper argues that while infrastructure development in South Africa is much-needed, the emphasis on de-risking for private sector buy-in overshadows the key role the state must play in leading on structurally transforming the economy.
Resisting the adoption of medical artificial intelligence (AI), it is suggested that this opposition can be overcome by combining AI awareness, AI risks, and responsibility displacement. Through effective integration of public AI dangers and displacement of responsibility, some of these major concerns can be alleviated. The United Kingdom’s National Health Service has adopted the use of chatbots to provide medical advice, whereas heart disease diagnoses can be made by IBM’s Watson. This has the ability to improve healthcare by increasing accuracy, efficiency, and patient outcomes. The resistance may be due to concerns about losing jobs, anxieties about misdiagnosis or medical mistakes, and the consciousness of AI systems drifting more responsibility away from medical professionals. There is hesitancy among healthcare professionals and the general public about the deployment of AI, despite the fact that healthcare is being revolutionised by AI, its uses are pervasive. Participants’ awareness of AI in healthcare, AI risk, resistance to AI, responsibility displacement and ethical considerations were gathered through questionnaires. Descriptive statistics, chi-square tests and correlation analyses were used to establish the relationship between resistance and medical AI. The study’s objective seeks to collect data on primary and public AI awareness, perceptions of risk and feelings of displacement that the professionals have regarding medical AI. Some of these concerns can be resolved when AI awareness is effectively integrated and patients, healthcare providers, as well as the general public are well informed about AI’s potential advantages. Trust is built when, AI related issues such as bias, transparency, and data privacy are critically addressed. Another objective is to develop a seamless integration of risk management, communication and awareness of AI. Lastly to assess how this comprehensive approach has affected hospital settings’ ambitions to use medical AI. Fusing AI awareness, risk management, and effective communication can be used as a comprehensive strategy to address and promote the application of medical AI in hospital settings. An argument made by Chen et al. is that providing training in AI can improve adoption intentions while lowering complexity through the awareness of AI.
A precise risk assessment in a production line constitutes a significant item to identify susceptible areas where there is a possibility of product quality degradation. This also applies to the precast concrete production line in Indonesia that has a spun pile product. Based on a risk assessment activity conducted in this study, it is proposed to build a traceability model in order to maintain and even improve the spun pile product quality in Indonesia. The approach used was the Neural Network of the perceptron model for weighing and will result in a defined traceability path in the context of reducing defects and even failed spun pile products. The simulation result showed that the model has been able to detect risky path possibilities to reduce product quality. The accumulation result of high-risk and medium-risk paths in this study showed that closer to product finalization, the risk will be higher. It is evident that when assessing Indicators, the order from the highest accumulation value first is Curing & Demolding and Stressing & Spinning at 29% each, Casting at 14%, Forming & Setting at 14%, and lastly Cutting & Heading at 14%. Regarding the risk assessment for activities, the first position is Curing & Demolding and Stressing & Spinning with 30% each, the second is Casting and Forming & Setting with 15% each, and the third is Cutting & Heading with 10%.
Credit risk assessment is one of the most important aspects of financial decision-making processes. This study presents a systematic review of the literature on the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques in credit risk assessment, offering insights into methodologies, outcomes, and prevalent analysis techniques. Covering studies from diverse regions and countries, the review focuses on AI/ML-based credit risk assessment from consumer and corporate perspectives. Employing the PRISMA framework, Antecedents, Decisions, and Outcomes (ADO) framework and stringent inclusion criteria, the review analyses geographic focus, methodologies, results, and analytical techniques. It examines a wide array of datasets and approaches, from traditional statistical methods to advanced AI/ML and deep learning techniques, emphasizing their impact on improving lending practices and ensuring fairness for borrowers. The discussion section critically evaluates the contributions and limitations of existing research papers, providing novel insights and comprehensive coverage. This review highlights the international scope of research in this field, with contributions from various countries providing diverse perspectives. This systematic review enhances understanding of the evolving landscape of credit risk assessment and offers valuable insights into the application, challenges, and opportunities of AI and ML in this critical financial domain. By comparing findings with existing survey papers, this review identifies novel insights and contributions, making it a valuable resource for researchers, practitioners, and policymakers in the financial industry.
Copyright © by EnPress Publisher. All rights reserved.