This study aims to explore the connotation of “Guanxi” within contemporary Chinese marketing channels and to construct and verify a global management model. The objective is to examine how instrumental and emotional dimensions of Guanxi influence enterprise operations and management processes. A hybrid research methodology combining qualitative and quantitative approaches was employed. In-depth interviews with 30 dealer executives provided qualitative insights, while a large-scale survey with 305 valid responses facilitated quantitative analysis. SPSS22.0 and LISREL8.8 were utilized for data analysis, including reliability, validity, hypothesis testing, and structural equation modeling (SEM). The findings reveal that Guanxi is multi-dimensional, comprising both instrumental and emotional components. Instrumental Guanxi includes factors such as status, prestige, credibility, and decision-making power, while emotional Guanxi encompasses trust, emotional connection, and mutual respect. Both dimensions significantly affect professionalism, shared values, contact frequency, and popularity within marketing channels. Hypothesis testing confirmed the significant relationships between these variables, except for the non-significant impact of popularity on instrumental Guanxi. The mediating effects of flexibility and supervision on the relationship between Guanxi and corporate performance were also significant, highlighting the mechanisms through which Guanxi influences organizational outcomes. Moderating effects of perceived internal incentive fairness and digital collaboration capabilities further amplify these relationships. Finaly, the study underscores the dual importance of strategic utility and emotional resonance in Guanxi, providing a robust model for understanding its impact on business management. These insights are valuable for both researchers and practitioners aiming to leverage Guanxi in enhancing organizational performance and relational strategies.
This article examines the factors influencing sustainable entrepreneurship (SE) in Arab countries, focusing on economic, social, and technological dimensions. Using data from various sources and structural equation modeling, the study explores the relationships between these factors and SE sustainability. The findings reveal that economic factors, such as GDP per capita and foreign direct investment (FDI), positively influence SE sustainability, emphasizing the need for a conducive economic environment. Social factors, measured by Internet usage and the Human Development Index (HDI), also significantly impact SE sustainability, highlighting the importance of access to information and education. However, technological factors like patent applications and high-tech exports did not show a significant positive relationship with SE sustainability, suggesting a minimal direct impact on SE longevity in Arab countries. These insights have implications for policymakers, stressing the importance of fostering economic growth and enhancing social infrastructure to support sustainable entrepreneurial ecosystems. Despite its robust methodology, the study has limitations, such as incomplete data for certain countries, affecting the generalizability of the findings. Future research could explore additional factors influencing SE sustainability, further investigate the role of technology, and expand the geographical scope to include more Arab countries.
This investigation extends into the intricate fabric of customer-based corporate reputation within the banking industry, applying advanced analytics to decipher the nuances of customer perceptions. By integrating structural equation modeling, particularly through SmartPLS4, we thoroughly examine the interrelations of perceived quality, competence, likeability, and trust, and how they culminate in customer satisfaction and loyalty. Our comprehensive dataset is drawn from a varied demographic of banking consumers, ensuring a holistic view of the sector’s reputation dynamics. The research reveals the profound influence of these constructs on customer decision-making, with likeability emerging as a critical driver of satisfaction and allegiance to the bank. We also rigorously test our model’s internal consistency and convergent validity, establishing its reliability and robustness. While the direct involvement of Business Intelligence (BI) tools in the research design may not be overtly articulated, the analytical techniques and data-driven approach at the core of our methodology are synonymous with BI’s capabilities. The insights garnered from our analysis have direct implications for data-driven decision-making in banking. They inform strategies that could include enhancing service personalization, refining reputation management, and improving customer retention efforts. We acknowledge the need to more explicitly detail the role of BI within the research process. BI’s latent presence is inherent in the analytical processes employed to interpret complex data and generate actionable insights, which are crucial for crafting targeted marketing strategies. In summary, our research not only contributes to academic discourse on marketing and customer perception but also implicitly demonstrates the value that BI methodologies bring to understanding and influencing consumer behavior in the banking sector. It is this blend of analytics and marketing intelligence that equips banks with the strategic leverage necessary to thrive in today’s competitive financial landscape.
Road accidents involving motorcyclists significantly threaten sustainable mobility and community safety, necessitating a comprehensive examination of contributing factors. This study investigates the behavioral aspects of motorcyclists, including riding anger, sensation-seeking, and mindfulness, which play crucial roles in road accidents. The study employed structural equation modeling to analyze the data, utilizing a cross-sectional design and self-administered questionnaires. The results indicate that riding anger and sensation-seeking tendencies have a direct impact on the likelihood of road accidents, while mindfulness mitigates these effects. Specifically, mindfulness partially mediates the relationships between riding anger and road accident proneness, as well as between sensation-seeking and road accident proneness. These findings underscore the importance of effective anger management, addressing sensation-seeking tendencies, and promoting mindfulness practices among motorcyclists to enhance road safety and sustainable mobility. The insights gained from this research are invaluable for relevant agencies and stakeholders striving to reduce motorcycle-related accidents and foster sustainable communities through targeted interventions and educational programs.
Technology development in the agricultural sector is important in the development of Thailand’s economy. The purpose of this research was to study the approach of guidelines for future agricultural technology development to increase productivity in the Agricultural sector in order to develop a structural equation model. The research applied mixed-methodology. Qualitative research by in depth interview from 9 experts and focus group with 11 successful businesspersons for approve this model. The quantitative data gather from firm, in the 500 of agricultural sector by using questionnaire, using statistical tests of descriptive analysis, inferential analysis, and multivariate analysis. The research found guidelines for future agricultural technology development to increase productivity in the Agricultural sector composed of 4 latent. The most important item of each latent were as following: 1) Agrobiology Technology (= 4.41), in important item as choose seeds that for disease resistance and tolerate the environment to suit the cultivation area, 2) Environmental Assessment (= 4.37),, in important item as survey of cultivated areas according to topography with geographic information system, 3) Agricultural Innovation (= 4.30), in important item as technology reduces operational procedures, reduce the workforce and can reduce operating costs, and 4) Modern Management Systems (= 4.13), in important item as grouping and manage as a cooperative to mega farms. In addition, the hypothesis test found that the difference in manufacturing firm sizes. Medium and Small size and large size revealed overall aspects that were significantly different at the level of 0.05. The analysis of the developed structural equation model found that there was in accordance and fit with the empirical data and passed the evaluation criteria. Its Chi-square probability level, relative Chi-square, the goodness of fit index, and root mean square error of approximation were 0.062, 1.165, 0.961, and 0.018, respectively.
Copyright © by EnPress Publisher. All rights reserved.