Heavy metal contaminated soil due to industrial, agricultural and municipal activities is becoming a global concern. Heavy metals severely affect plants, animals and human health. A suitable technology is necessary for heavy metals removal because it cannot self-decomposition as organic compounds. Among the various technologies surveyed, phytoremediation is one of the safest, most innovative, environmental friendly and cost-effective approach for heavy metals removal. Nevertheless, traditional phytoremediation practices pose some limitations such as long processing time, unstable treatment efficiency and limited application at large scale. In many methods proposed to improve phytoremediation, integrated phytoremediation has been studied in the recent years. Integrated phytoremediation use chelating agents and phytohormones to enhance phytoremediation. This is an environmentally safe, saving time and relative high effective method. Results showed that the association of a metal ion and a chelating agent to form chelates helps to maintain the availability of metals in the soil for the uptake of plants. Phytohormones supply nutrients for the soil to support vegetable growth. Therefore, integrated phytoremediation is a promising solution to overcome the disadvantages of conventional phytoremediation. It should be taken commercialization and need more applied projects in this field to demonstrate and clarify the real potential of this technology. In view of above, this manuscript reviews the mechanism and the efficiency of integrated phytoremediation for heavy metals in contaminated soil to give an overview of this technology.
For five different regions in Kırklareli province, heavy metals; such as Pb, Ni, Cu, Mn, Cd, Cr, Co, Zn, Mo, and Fe in the mixture of leaves and flowers from linden trees (Tilia tomentosa L.) were analyzed by using flame atomic absorption spectroscopy after the samples were dissolved with microwave method. Also, organochloride pesticides; such as ∑BHC: [α-BHC, β-BHC, γ-BHC, and δ-BHC], ∑DDT: [4,4’-DDD, 4,4’-DDE, and 4,4’-DDT], α-Endosulfan, β-Endosulfan, Endosulfan sulfate, Heptachlor, Heptachlor-endo-epoxide, Aldrin, Dieldrin, Endrin aldehyde, Endrin ketone, Endrin and Methoxychlor in these samples were determined by utilizing gas chromatography mass spectroscopy after the samples were prepared for analyses by using QuEChERS method. The metal concentrations in the samples were in the range of 45.3 to 268 mg/kg for Mn, 0.25 to 18.8 mg/kg for Cu, 11.5 to 46.1 mg/kg for Zn, 128 to 1310 mg/kg for Fe, 10.4 to 38.6 mg/kg for Mo, 0.82 to 1.34 mg/kg for Cd, 0 to 6.45 mg/kg for Ni, 0 to 19.2 mg/kg for Pb, and 0 to 8.25 mg/kg for Cr. Moreover, the concentrations of organochloride pesticides in samples were usually determined to be lower than their maximum residue level values given the pesticide residue limit regulation of Turkish Food Codex.
This project is carried out to assess the remediation effect on soil contaminated by molybdenum (Mo), one of heavy metals, through the use of an energy crop, sunflowers. This project explores the integration of phytohormones and chelates in the phytoremediation of soils contaminated by heavy metals, and further assesses the operational measures of remedying heavy-metal contaminated soil with sunflowers, in addition to the related environmental factors. Then the project explores phytohormones and heavy metals on the growth scenario explants (explants morphological analysis) through the experiment. The results indicate that GA3 can increase the growth rate of the plants. The average incremental growth of the heavy-metal-added-only group is 21.0 cm; of the GA3-added group it is 21.9 cm; of the EDDS-added group, it is 20.3 cm; of the GA3+ EDDS-added group, it is 21.7 cm. Compared with the conventional methods of phytoremediation, these integrated measures can actually spur the growth of plants.
Antioxidants are derivatives of vitamin C or beta-carotene that prevent reactions stimulated by oxygen, peroxides, or free radicals, thus reducing the oxidative stress. They have found their way into many uses in treating several human diseases and reducing the risk of developing diseases like cancer. In view of this property, the present study was focussed in identifying several plants possessing antioxidative properties and which were also conserved in the ex-situ park of CSIR – Central Institute of Mining and Fuel Research, Dhanbad, India. Fifteen medicinal plants including herbs, shrubs and grasses are reported in this paper, and a collective insight has been presented about their antioxidant properties and the present state of their pharmacological applications. The specific chemical constituents abundant in the leaves, roots, stems, seeds and fruits of each of these plants have also been dealt with. To report a few antioxidant pharmacological preparations from Ayurvedic literature are Vimang, Maharishi Amrit Kalash (MAK4, MAK5), Maharishi Ayurved (MA631, MA47), MA Raja’s Cup, MA Student Rasayana and MA Ladies Rasayana. This review has been attempted to enhance the importance of the plants which are generally being neglected, so that it can used by the local people in rural areas for their cultivation and it will also pave the pathway for their subsequent future use in medicinal and research industry for drug formulation.
The problem of the synthesis of new type nanomaterials in the form of nano-coatings with sub-nanometric heterogeneity has been formulated. It has been presented an analysis of influences of physical vapor deposition in ultrahigh vacuum on the process of intermixing a film with a substrate, including the results, which has been obtained under the formation of transition metal – silicon interface. The generalization of the obtained experimental results develops an approach to the development of new nano-coatings with low-dimensional heterogeneity. The principles of constructing such low-dimensional nano-coatings, their properties and possible applications are considered.
Copyright © by EnPress Publisher. All rights reserved.