Taxus cuspidata Sieb. ET. Zucc. is a taxus of Taxaceae, a rare third-order relict species distributed in northeastern China, and a wild endangered plant species protected by national level I. Taxol (paclitaxel, trade name taxol) and cephalomannine (cephalomannine) are all diterpenoids contained in the genus Taxus, with broad-spectrum anti-tumor activity and unique anti-cancer mechanism. In this study, the distribution of paclitaxel and cephalomannine in the leaves of Taxus cuspidata in different parts and different growth stages was discussed. The results showed that the content of two substances in the leaves of the majority of the crowns was lower than that of the biennial and tertiary there were no significant differences in the contents of two substances in the two-year and three-year-old
foliage. There was no significant difference in the contents of the two layers in the three levels of the noodles, and
the content of the male was slightly higher than that of the dark. The content of paclitaxel in the leaves of natural
northeast yew was the highest at dormancy period, and the content of flowering and fruit was not much different. The
content of Cephalotaxin was the highest in dormancy period, and that of cephalosporin the content of paclitaxel and
cephalomannine in each plant were significantly different. There was significant difference between the two plants.
By reviewing US state-level panel data on infrastructure spending and on per capita income inequality from 1950 to 2010, this paper sets out to test whether an empirical link exists between infrastructure and inequality. Panel regressions with fixed effects show that an increase in the growth rate of spending on highways and higher education in a given decade correlates negatively with Gini indices at the end of the decade, thus suggesting a causal effect from growth in infrastructure spending to a reduction in inequality through better access to education and opportunities for employment. More significantly, this relationship is more pronounced with inequality at the bottom 40 percent of the income distribution. In addition, infrastructure expenditures on highways are shown to be more effective at reducing inequality. By carrying out a counterfactual experiment, the results show that those US states with a significantly higher bottom Gini coefficient in 2010 had underinvested in infrastructure during the previous decade. From a policy-making perspective, new innovations in finance for infrastructure investments are developed, for the US, other industrially advanced countries and also for developing economies.
Electricity generation around the world is mainly produced by using non-renewable energy sources especially in the commercial buildings. However, Rooftop solar Photovoltaic (PV) system produced a significant impact on environmental and economical benefits in comparison to the conventional energy sources, thus contributing to sustainable development. Such PV’s system encourages the production of electricity without greenhouse gas emissions that leads to a clean alternative to fossil fuels and economic prosperity even in less developed areas. However, efficiency of rooftop solar PV systems depends on many factors, the dominant being geographical (latitude, longitude, and solar intensity), environmental (temperature, wind, humidity, pollution, dust, rain, etc.) and the type of PV (from raw material extraction and procurement, to manufacturing, disposal, and/or recycling) used. During the feasibility analysis of the environment, geographical conditions are keep in well consideration, but the pollution level of the city is always overlooked, which significantly influences the performance of the PV installations.
Therefore, this research work focused on the performance of rooftop solar PV installed in one of the most polluted city in India. Here, the loss in power generation of rooftop solar PV has been studied for the effect of deposited dust particles, wind velocity before and after the cleaning of the panels. The actual data has been utilized for the calculation of the energy efficiency and power output of the PV systems. According to the results, it has been concluded that dust deposition, wind speed and pollution level in city significantly reduces the efficiency of solar photovoltaic panel. Hence, an overview of social and environmental impacts of PV technologies is presented in this paper along with potential benefits and pitfalls.
Polymers obtained from renewable sources are gaining popularity over their petroleum based counter parts in recent years due to their capability to address the environmental pollution related concerns emanating from the widespread usage of synthetic polymers. Even though the polymers from renewable sources are attractive in an environmental point of view, some of the property limitations and the high cost of these materials pose limitations for their extensive commercial applications. These aspects opened the door for a large chunk of research activities in development of polyblends and composites containing polymers from renewable sources as one of the components. Poly (lactic acid) (PLA) is one of the most discussed and commercialized polymer originated from renewable resources. Even though it has many useful properties, certain disadvantages like high brittleness, low impact resistance etc. limit the wide spread commercialization of PLA. In this review article, the recent research activities which are aimed to fill this gap by various modifications of PLA are discussed with special emphasis on the latest research advancements in the field of biodegradable and non biodegradable systems containing PLA.
Attempts were made in the present study to design and develop skeletally modified ether linked tetraglycidyl epoxy resin (TGBAPSB), which is subsequently reinforced with different weight percentages of amine functionalized mullite fiber (F-MF). The F-MF was synthesized by reacting mullite fiber with 3-aminopropyltriethoxysilane (APTES) as coupling agent and the F-MF structure was confirmed by FT-IR. TGBAPSB reinforced with F-MF formulation was cured with 4,4’-diamino diphenyl methane (DDM) to obtain nanocomposite. The surface morphology of TGBAPSB-F-MF epoxy nanocomposites was investigated by XRD, SEM and AFM studies. From the study, it follows that these nanocomposite materials offer enhancement in mechanical, thermal, thermo-mechanical, dielectric properties compared to neat (TGBAPSB) epoxy matrix. Hence we recommend these nanocomposites for a possible use in advanced engineering applications that require both toughness and stiffness.
Japan’s investment in the domestic construction industry has fallen to less than half its peak in 1992. Given the country’s declining population, Japanese construction companies must go global to remain profitable. To what extent the Japanese government and Japanese companies can contribute to meeting the growing infrastructure needs in the region is unclear as Japanese companies have long been operating primarily in Japan. The Japanese government has in recent years passed a series of new laws that encourage private sector participation in financing, building and operating public infrastructure. Through involvement in such public projects, Japanese companies have developed the skills and technologies to build a variety of infrastructures that are resilient to natural disasters and adaptable to various geographical conditions and social and economic development. But the major challenge for Japanese companies is to transform their business model drastically from one that relies on the domestic market to one that contributes to the social and economic development of third countries.
Copyright © by EnPress Publisher. All rights reserved.