Six Sigma is an organized and systematic method for strategic process improvement that relies on statistical and scientific methods to reduce the defect rates and achieve significant quality up-gradation. Six Sigma is also a business philosophy to improve customer satisfaction, a tool for eliminating process variation and errors and a metric of world class companies allowing for process comparisons. Six Sigma is one of the most effective advanced improvement strategies which has direct impact on operational excellence of an organization. Six Sigma may also be defined as the powerful business strategies, which have helped to improve quality initiatives in many industries around the world. With the use of Six Sigma in casting industries, rejection rate is reduced, customer satisfaction is improved and financial benefits also increased. Six Sigma management uses statistical process control to relentlessly and rigorously pursue the reduction of variation in all critical processes to achieve continuous and breakthrough improvements that impact the bottom-line and/or top-line of the organization and increase customer satisfaction. In this paper author reviewed some of the significant previous published papers and focused on the general overview of publication in casting industries.
In this study, nano-scale microstructural evolution in 6061-T6 alloy after laser shock processing (LSP) was studied. 6061-T6 alloy plate was subjected to multiple LSP. The LSP treated area was characterized by X-ray diffraction and the microstructure of the samples was analyzed by transmission electron microscopy. Focused Ion Beam (FIB) tools were used to prepare TEM samples in precise areas. It was found that even though aluminum had high stacking fault energy, LSP yielded to formation of ultrafine grains and deformation faults such as dislocation cells, stacking faults. The stacking fault probability (PSF) was obtained in LSP-treated alloy using X-Ray diffraction. Deformation induced stacking faults lead to the peak position shifts, broadening and asymmetry of diffraction. XRD analysis and TEM observations revealed significant densities of stacking faults in LSP-treated 6061-T6 alloy. And mechanical properties of LSP-treated alloy were also determined to understand the hardening behavior with high concentration of structural defects.
In this paper, a new compound health drink of aloe and balsam pear was developed by using high-quality aloe and balsam pear as main raw materials and white granulated sugar and citric acid as auxiliary materials. The effects of the addition of aloe juice, balsam pear juice, white granulated sugar and citric acid on the sensory quality of the beverage were investigated and analyzed. On this basis, the orthogonal test was conducted to determine the best formula for the beverage. The results showed that the order of the factors affecting the quality of the finished product was the addition of aloe juice > white granulated sugar > citric acid > balsam pear juice; the optimal formula is 24% aloe juice, 10% balsam pear juice, 7% white granulated sugar and 0.09% citric acid and the resulting beverage was bright in color, sweet and sour with good flavor, and its physical, chemical and health indicators meet the national standards.
The range migration algorithm (RMA) is an accurate imaging method for processing synthetic aperture radar (SAR) signals. However, this algorithm requires a big amount of computation when performing Stolt mapping. In high squint and wide beamwidth imaging, this operation also requires big memory size to store the result spectrum after Stolt mapping because the spectrum will be significantly expanded. A modified Stolt mapping that does not expand the signal spectrum while still maintains the processing accuracy is proposed in this paper to improve the efficiency of the RMA when processing frequency modulated continuous wave (FMCW) SAR signals. The modified RMA has roughly the same computational load and required the same memory size as the range Doppler algorithm (RDA) when processing FMCW SAR data. In extreme cases when the original spectrum is significantly modified by the Stolt mapping, the modified RMA achieves better focusing quality than the traditional RMA. Simulation and real data is used to verify the performance of the proposed RMA.
The influence of mining activity on the environment on the environment belongs to the most negative industrial influences. Mine subsidence on the surface can be a result of many deep underground mining activities. The present study offers the theory to the specific case of the deformation vectors solution in a case of disruption of the data homogeneity of the geodetic network structure in the monitoring station during periodical measurements in mine subsidence. The theory was developed for the mine subsidence at the abandoned magnesite mine of Košice-Bankov near the city of Košice in East Slovakia. The outputs from the deformation survey were implemented into geographical information system (GIS) applications to a process of gradual reclamation of whole mining landscape in the magnesite mine vicinity. After completion of the mining operations and liquidation of the mine company, it was necessary to determine the exact edges of the mine subsidence of Košice-Bankov with the zones of residual ground motion in order to implement a comprehensive reclamation of the devastated mining landscape. Requirement of knowledge about stability of the former mine subsidence was necessary for starting the reclamation work. Outputs from the present specific solutions of the deformation vectors confirmed the multi-year stability of the mine subsidence in the area of interest. Some numerical and graphical results from the deformation vectors survey in the abandoned magnesite mine of Košice-Bankov are presented. The obtained results were transformed into GIS for the needs of the municipality of Košice City to the implementation of the reclamation activities in the mining territory of Košice-Bankov.
Copyright © by EnPress Publisher. All rights reserved.